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CHAPTER I. SEPARATED PAIR WAVE FUNCTION,
ELECTRON CORRELATION AND MOLECULAR

PROPERTIES OF IMIDOGEN



INTRODUCTION

One of the goals of quantum chemistry is the ab initio
calculation of moleculaf properties. Such calculations wOuld,
for example, be of ﬁarticular value for species arising as
reaction intermediates, which are of interest to the experi-
mental chemist but which are not accessible to him for
detailed study because of their short life-times. To
achieve this objective, practical methods of obtaining
suitably accurate wave functions for molecules and atoms
mustl be developed. The recent self-consistent-field calcula-
tions by Cade and Huo (1) on the diatomic hydrides are an
encouraging sign that the execution of such projects is
within reach today, at least for small molecular systems.

At the same time however, these results, which are very close
to the exact Hartree-Fock solution for these systems, give
systematically poor values for the dissociation energies
which characterize the simple dissociation reactions of the
hydrides and thus, pecint out the need for calculations,
beyond the Hartree-Fock approximation, that will take into
account the effects éf électronic correlation. One approach
in this divection is the method of separated pairs intro-
duced by lurley, Lennard-Jones, and Pople (2), which gives
wave functions that are particularly amenable to intuitive
interpretation while allowing for correlation effects within

electron pairs or "geminals" (3).
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4The att#inment of'éccurate results from separated pair
calcuiations'on the befyliium atdmié systems (4) has stim-
‘ulated an interest in the possibility of using this schémé to
voﬁtain similérly aqéurate.results for molecular systems. The
series éf four-, six- and eight-eléctron.diatomic hydrides,
LiH, BH and NH, offérsba means of testing'this hypofhesis"on
a.SetAof increasingiy moré compliéated molecules: LiH has two
electrohs’forming‘é‘"K shell" geminal around the heavier nu-
cleus and anbther two.eiectrons fdrming a "bonding" geminai
between the nuclei; BH has two additional electrons which
.form a "lone. pair" geminél aroﬁnd the heavier nucleus§ and‘in
addition to these-geminals, NH has two more electrons forming
a "triplet” geminal about the heavy nucleus. The first two . '!"
systems are the subject of a Ph.ﬁ. fhesis being prepared by
E. Mehler at Iowa State University and the imidogen, NH,
molecule is the éubject of this chapter.

Although the band spectraAof‘the imidogen molecule had
been observed in ammonia flameé‘as early as 1893 by Eder (5)
and in 1919 by Fowler and Grégory (6), the proper identifica-
.tion of these bands with NH did not come until the late 1920fs
(7-9). The imidogen molecule has been produced in the laborato-
ry (10-26) by the thermal decomposition of hydrazoic acid
N3H (10,11), by the uv photochemical decomposition of NBH (12),
by passing an electrical discharge through N3H (13), by the
photolysis of NéH (16-18), by decomposing hydrazine N2H4'(14,

19,20), by the photochemical decomposition of ammonia'(15,21)l
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and by photolysing isocyanic acid, HNCO (22,23). Imidogen has
also been produced by shock wave studies of mixtures of
nitfdgen and hydrogen,(24,25) and by the shock heating of
ammonia.(25,26). It has been proposed that NH exists on

2 72
NH, (27), on Fé.catalySfS during NH, synthesis (28), and

Ni.and(Fe“Surfacés during the chemisorption of N,, H, and

3

on Pt catalysts during'NH ‘decomposition (29).

»Imidogén has 5een studied in homdgenéous electric fields
(30,31). A study of the Stark effect by optical methods has
allbwed:the determination of dipole momenté_for the NH excited
states but no Observations on the ground state could be made |
(31). Electron impéct studies have yieided values for the NH
ionization potential (32) and thermodynamic considerations
have yielded heats of formation and dissoCiation énergies'
(33435), Analyses of the‘spectra of NH have produced values
for the spectroscopic constants: k_ (36,37), W (37-39),

w %, (39), B, (9,38), o, (38) and R  (9,37,40). |

The chemistry of imidogen has been of interest in
astrophysics since its spectral bands have been observed in
the spectra of comets (41-44), in the solar spectrum (6,45),
in the night sky afterglow (46), and in lightning (47), It
has been suggested (48) that some of the colors on Jupiter
may be due to condensed reactive‘speCies such as (NH)n since
the conditions in Jupiter's atmosphere resemble those used
in the laboratory to trap NH radicals at low temperatures

(10,11,14,16-18). Work on the oxidation of hydrazines in



liquid rocket fuel research;has also stimulated an interest in
imidbgen and its halogenated derivativés (49). bThe reactions
‘of imidogen‘ih organic cﬁemistry have been recently reviewéd
(50) and a general review érticle dn.imidogen'chemisfry has-
appeared (49, also seé 51). |
| On fhe theoretical side, by interpreting the band spectra

of diatomic mdlecules, and by correlating the electronic states
6f molecules with those of their isoelectronic united and
separated atoms, Mulliken (52) predicted‘in 1932 the existence
of six electronic states of NH whiéh were all verified experi-
mentally by 1945 (51). Later, in 1934, Lennard—Jonés studied
the correlation between the electronic stétes of NH with the
isoelectronic states of oxygen and CH2 using the molecular
vorbital method (53).

The earliest calculations on the NH ground state, 32-,
were performed by Stehn in 1937 (54) and King in 1938 (55);
these involved empirical methods for evaluatipg integrals.
Further semi-empirical investigations were carried out by
Moffitt in 1950 (56), by Companion and Ellison in 1960 (57)
and by. Lippencott and Dayhoff in 1960 (58).

The first non-empirical, ab initio calculation on the
35" state of imidogen was performed by Higuchi in 1956 (59)
using a basis set of Hartree-Fock atomic orbitals with the
linear combination of atomic orbitals - molecular orbital -

self consistent field (LCAO-MO-SCF) method. Further use of

the LCAO-MO-SCF method was made in 1958 by Krauss (60) and



Boyd (61) using minimal basislsets of Slater-type atomic
orbitals (STAO). Also, in 1958, Krauss and Wehner (62)
extended their LCAO-MO-SCF wave function by the inclusion of
higher configurations and Hurley (63) used the valence bond
method including higher configurations to perform calculations
using minimal STAO's. Configuration interaction calculations
uéing Gaussian-type functions were performed by Reeves in
1963 (64) and by Reeves and Fletcher in 1965 (65); Calcula-
tions using STAO's on one center only were performed in 1963
by Bishop and Hoyland (66) and in 1965 by Lounsbury (67) and
Joshi (68).

The calculations of Cade and Huo in 1967 (1), using an
extended set of STAO's to build an LCAO-MO-SCF wave function
for imidogen, are the most accurate and extensive of all the
previous works. The current investigation goes beyond these
resulls by using the separated pair approximation to study the
ellect of including some electron correlation in the wave
function.

‘While expliéit formulation of separated pairs in terms
of natural orbitals for many-electron systems having a singlet
spin state have been given repeatedly (2,4,69), the triplet
spin case has been discussed only for two-electron systems
(70,71) . General expressions that are valid for any choice
of spin state are therefore derived here for the many-electron

separated pair wave function. The geminals are expanded in
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terms of.their natural orbitals and a variational procedure is
'vdeﬁeloped for their determination. |
Within this frameﬁork, natural orbitals of the separated'
pair wave function for the 3Zf ground.state of the imidogen
molequle are'calculated, and in order to give a pictorial
appfeciatioh of their structures, contour maps have been
draWn for them. Several physical properties are calculated,
namely, the total energy, the dissociétion energy, the
equilibrium internuclear distance, the leecular potential
energy cufve,'the spectroscopic constants, the molecular
dipole and quadrupole moments, and various other one- and
two—electronbexpectation values. Of greatest interest is
thé corfelation energy recovered by the separated pair wave
function and, for fhis reason, a defailed analysis of the
correlation is giveh in terms of the geminals and the natural
orbitals. This study reveals that the separated pair approxi-
matidn provides a suitable description of part of the electronic
correlation in NH, but, on the other hand, is too restrictive
to yield a complete description of all the various electronic
correlations in this molecular system. Nevertheless, the
analysis does shed light on the naturebof the omitted part of
the correlation and suggests directions for future

improvements.



FORMULATION OF THEORY

Geminals and Separated Pairs
The quantum mechanical properties of a pair of electrons
can be described (70,71) by a geminal, A, which is a function
of the spin and space coordinates of two particles.

" Geminals are normalized to unity in the sense,

fdry At h (1,2)A% (1,2) = 1, (L)

and are antisymmetric with respect to an interchange of the
coordinations of the two electrons:

A(1,2) = -A(2,1). (2)
An expansion in terms of natural spin orbitals (NSO), Vs
can be used to express the functional form of a geminal so
that

N1,2) = §ci[¢2i(1) ¥2i41(2) ~ Vg5, () ¥, (D]/V2 (3)
The natural orbitals are orthonormal functions,

fdr ¥ (1) $X1) =5 (4)

n,
and Lherefore normalization of a geminal gives the occupation

coeflic¢icents, Cy» the property,

] 2
? | ey | < = 1.‘ (5)

The first order density matrix, -+, of a geminal thus takes

the form,



]

V(L1 = 2rdr, A(1,2) A*(LT,2)

27 ryy | 1 6
Zleg | Mg Wby x (D 5 Wy, #(1D].(6)
In this investigation, geminals are chosen to be
| eigenfunctions of the total spin angular MOmentum, Sz, and
its z-component, Sz’ thus the two electrons in a geminal

~can form a singlet or a triplet spin state. In the first

case, the natural spin orbifals4can be taken as:

Vo1 = 0 @
Voir1 = ¢ P o | (7
.Where_thé naturalkorbitals (NO), ¢i; are spatial functions
only. This gives the singlet geminal a symmetric space
function:

M1,2) = Ze;6,(1) 6,(2) [a(1)B(2) - B(a(2)]/ vVZT (8)
1 .

To obtain a triplet spin state with SZ = +1, the NSO can‘be

expressed as:

Yoy =X = x40

Voi = ¥y = ¥30 (9)
The functions x and y are again spatial functions only, but

the geminal now has an antisymmetric space representation:

M1,2) = Z c;[x,(D)y;(2) - y,(Dx,(2)] a(l)a(2)/ V2o (10)
1 .

For the S, = ~1 component of the triplet, the functions «
in Eq. 9 above would be replaced by B. The S, = 0 component

of the triplet can be handled by defining the NSO's as follows,.
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1'Péhr = X
¢4r+1 - yrB
1p":lr+2 = xrB
w4r+3 = Y% | (11)

and by assuming the coefficients to be doubly degenerate,

c2r - c2r+1
2 _ 2 _
Zleg ¥ = 2 Zley |7 = 1. (12)
1 r

Thereby, one obtains,

AL, 2) = Zcy [V, (D, 1(2) - ¥, Y, (2)
.

+¢4r+2(1)¢4r+3(2) - ¢4r+3(1) ¢4r+2(2)]/ Ve u

- i czr[xr(l)yr(Z) - v, . (Dx ()]

s[a(1)B(2) + B(1)a(2)]/ /2. (13)
Thus, for any of the four possible spin eigenstates, Eq. 3
is applicable. This expression will therefore be used for
the derivation of energy expressions.

In a many electron system, each distinct pair of
electrons can be handled by means of a distinet geminal.
Hurley, Lennard-Jones, and Pople (2) have used this concept
of separated pairs to approximate the total wave function.
They furthermore introduced the constraint that geminals for
diffcrent pairs be "strongly" orthogonal:

faga,(1,2) g (1,3) = 0 if pry | (14)
which implies the "weak" orthogonality property:

j'dTl fdrzﬁl(l,Z) As(l,z) = 6#,0' (15)
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It has been shown (72,73), that strong orthogonality between
two geminals, A " and AU, implies orthogonality between the

NSO's, ¥ . and woj used in the expansion, Eq. 3, of the

pi
respective geminals:

fduy ¥y () ¥ (1) = 8,0, (16)
The imposition of strong ofthogonality between various
geminals represents a loss of generality from an unrestricted
pair formulation but it does reduce the problem of finding
energy and other expectation value expressions to a

tractable form (74).
Total Many Electron Wave Function

In the approximation just referred to, a quantum
mechanical state of a 2n-electron system is described by a
wave function, VY, which is expressed as an antisymmetrized
product of stfongiy orthogonal geminals:
¥(1,2,...,2n) =76\,[/\1(1,2) Ng(3,4) ..on (2n-1,2n)]. (17)
Becausc ol the antisymmetry of the geminals themselves, a
partial antisymmetrizer,f*, is sufficient to achieve a
totally antisymmetric wave function as required to fulfill the

Pauli exclusion principle:

A = [2% () 1)t/? g(-l)P P (18)

where the permutation operator, P, only permutes the coordin-

ates of eclectrons bhetween different geminals.
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In a system with an odd number of electrons, 2n electrons
are described by n_geminals as above and the remaining electron
is described by an orbital, Z,

zZ(1) = z (1) a(l) (19)

n+1,0
wiiich is orthogonal to each of the géminals:

rdry A, (1,2) Z*(1) = 0 for all p. (20)

The total wave function in this case is givel by,

¥(1,2,...2n,2n+1) a}*[Al(l,z)... An(2n—1,2n) 2(2n+1) ], (21)

where

A = 12201112 5-1)F b (22)
> p

and herc the permutation operator, P, permutes the coordinates
of electrons betwee? thé orbital and each of the geminals in.
addition to the intergeminal pérmutations as above. The
constants multiplyihg the summation signs in Egs. 18 and 22,
insure that the total wave functions, Egqs. 17 and 21, re-
spectively, be normalized to unity.

I1 is convenient to adopt the following convention for
the case of 2n+1 electrons:

. e - 5 3
Chpl,i - %1,0 @ ¥y x T 2 % o (23)

This allows the correct result to obtain from expressions
involving summations over the geminal indices.

For an N-electron wave function of the above type, the
second-order density matrix, I', can be easily calculated and
easily expressed in terms of natural spin geminals (NSG).

This expa:ision of the second-order density matrix is as
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follows:

I'(1 2/1'27)

N(N-1) [] fd1g...dry ¥(1,2,...,N) ¥*(1%,27,...,N)

I

2 E A (1,2) AX(LY,29)
12 0c . |2a . (1,2)A . *@17,2' ).

+2 Z = | Ri,oj pi,v]

C,, -
D
p<ov ij J

Cyi
(24)

The summation over p runs over the number of geminals involved
whereas the upper limit of the index, v, will be n or n+l for
the éven or-ddd electron case respectively. Fof'b = n+l,
the summation over j will reduce to the one terﬁ, j=0, due
to Eq. 23. The first n NSG's are the geminals occurring in
Eqs. 17 and 21. The remaining NSG are defined (69) as follows:
A o3¢ = ¥ (DY, (2) ¥ (DY, D]/ 57 (25)

| The first order density matrix, y, of the total wave
function is given by

¥(1,2,...,M)¥*@Q",2,...,N)

i

y(1[1%) = Nf{[dt,...dT

N

(1/N-1) Jd1, I'(1 2 | 192)

Loy (L]1Y) + Z2(1)z*(1°)
p M

- 2 * ¢ * R
ii!c ui' [¢u,21(l)wu,21(1 )+¢u,21+1(1)¢p,21+1(1 )]

il

(26)
Thus the NSO's of the geminals and the lone orbital form the

NSO's of the total wave function.
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. Separated Pair Energy Expression
The energy, E, of a many electron system is given as the
: eXpectation value,
E = [dT ¥ HY* / fdr ¥ ¥* (27)
where H is the non-relativistic Hamiltonian operator in the

Born-Oppenheimer approximation (75) expressed in atomic

units (76):
H= = Vg * Eh() + I ri."l (28)
a<B : iy
where
3 -1
Vda = Za’ZB‘RaB (29)
h(i)= T, + § Vi ‘ (30)
_ 2 .
T, =-1/2 VI, (31)
V. =-zr "1 (32)
ai a ai *

The indices, 'i and j, range over the number of electrons
while the indices, o and B, range over the number of nuclei,
The symbol, Za’ is the charge on the a nucleus, RaB is the
distance between nuclear centers, Toi is the distance from
electron i to nucleus a, and rij is the distance between
electrons i and j. Using the expression for the first and
second-order density matrices given above, the total energy
can be written as a sum over nuclear repulsion, intrageminal
and intergeminal contributions:

E=Z V g+ ZE@W) + Z I(,v) (33)
a<p o h) p<v

where
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* . .
E(p) = ?3 Cui © uj E(ul,uq), (34)
I(p,0) =X [cuilz lcojl2 I(pi,vj), (35)
ij .

E(pi,pj) = 0;,0(,2i|h]p,21) + (u,2i+1]h[p,2i+D)]

+[p,2i p,25]p,25+1 p,2i+i]-[p, 2i+1 p,2j|p,2j+1 %§2§],
6

I(pi,vj)=[p,2i p,2i | v,2jv,2j]+[p,2i u,21|0,2j+1 v, 2j+1]
+Ip,2i+1 p,2i+1|v,2j ©v,2j]+[e,2i+1 p,2i+1]v, 2j+10, 254]
~[u,2i v,2j|p,2i v,25]-[r,2i U,2j+1|u,21 V,2j+1]
~{u,2i41 v,2j|p, 201 0,25]-[1, 2i+1 v, 2j+1|p, 2i+1

v, 2j+1] | (37)
and where the following conventions have been used:

faT ¥ (1) B ¥ YD) (38)

I

(%k|h{x, 2)
[k A,2lp,m v,n] = delfdTéwK,;(l)¢l,ﬂ(l)r12_1¢u,m(2)¢§;n(2).
(39)
The expression in Eqs. 36 and 37 can be simplified once the
spin state of each geminal has been specified because the
particular expansions in Eqs. 7 and 9 can then be inserted
and the integration over the spin variables carried out. Here
again, for the case of an odd number of electrons, the
conventions adopted in Eq. 23 are used.

The quantities, E(p), in Eg. 33 are derived from thé
presence of the first n natural spiq geminals,Ali, in the
expansion of the second-order density matrix given in Eq. 24.
The terms I(p,v) in Eq. 33 result from the remaining natural

spin geminals, A , occurring in the second-order density

pi,vj
matrix. Thus, the energies, E(L), arise when two electrons
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occupy the same geminal and the contributions, I(p,v), arise
when the electrons occupy different geminals. This justifies
using the names, "intrageminal" and "intergeminal" to describe
these energy terms, Partitioning the'energy into these intra-
geminal and intergeminal contributions has been shown to be
useful for a study of the correlation energy effects in the
“beryllium atom (4) and shall be further developed here in a’
later section.

For a real wave function, the NO's used for the symmetric .
spatial expansion of the singlet and for the antisymmetric
spatial expansion of the triplet geminals can, without loss
of generality, be chosen to be real. This choice of NO's
forces the occupation coefficients, cui’ to be real (70).

The complex conjugation notation will therefore be dropped

hereafter.
Parametrization Qf the Natural Orbitals

The spatial natural orbitals which have been given the
symbols, ¢,X,y,2, Will hereafter be referred to by the generic
symbol w. These functions are obtained as linear combinations

of Slater-type atomic orbitals (AOQ),

-1 - -
x(umm, 0 = 2™ 2 (201172 M e TN 9 4, (40)

where the normalized, real spherical harmonics are given by,

SZm(Gfb) = @!m[ (cos ©) o (¢) (41)
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¢m(¢) = wrl/z cos m¢ m>0

(21r)"1/2 m=0

172 gin [m| ¢ m<0 (42)
and G?lm] are the normalized associated Legendre functions.
The subscript a implies that the coordinate variable is de-

fined with respect to an axial system centered at the nucleus

a. This basié set is non-orthogonal with the overlap matrix,

Sij = [dg X3 Xﬁ' (43)

The natural orbitals are written as

Yie T 2 X Dik (44)
where
o -1/2
Dix = ? ij  Tik (45)
1/2

The matrix g- performs a symmetric orthogonalization (77,78)

on the basis set after which the orthogonal transformation

matrix, T, generates the natural orbitals. The orthogonaliz-

ing matrix, §'1/2, is obtained by letting the eigenvectors of

S form the columns of the orthogonal matrix U, constructing

1/2

the diagonal matrix Q_ from the positive inverse square

roots of the corresponding eigenvalues, li’

a2l a2,

ij i ij (46)

and then forming

.&—1/2’£f_ | (47)

[
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For a given set of M basis orbitals, Xy having the
_quéntum'numbers, (ni zi mi), and the orbital exponents,C i
the degrees of freedom of the NO's are furnished by the M orbital
exponents, g i and the M(M-1)/2 degrees of freedom of the
orthogonal mafrix T. For the 1atter, a parametrization is
used,(79) which expresses the M2 elemenfs of.g ip'terms of
M(M-1)/2 angles, 7pq (p=1...M, q=1f..p), by means of the
recursive procedure summarized'below;

The orthogonal matrix T of degrée M is.obtained as the
M-th step in a‘recursive sequéncé‘of orthogohal matrices, z@“){

N m . . ) ) .
i.e. g=g( ). The m -th matrix, gan), is obtained from the

(m-1)~st matrix Z(m-l) by the following set of recursive steps:
m) _ . (m) R ¢ B
Tjk tjk .cos ij Sjk sin 7~jm
(m)_ ., (m) _. (m)
Sj+1,k tjk s;n yjm + sjk . CcOS ij (48)

where, for fixed k, one advances from j=1 to j=m using the

definitions:
L_(m) - z(m-l) 0
0 1
s™ =0y
Ym =7m/2
B Y | | (49)

It should be noted that the matrix D uniquely expresses

the NO's in terms of the AO'’s regardless of the choice of
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Orthogonaliiation procedure employed. For any particular
basis-set orthogonalization-transformation, ¥, there would be
a corresponding orthogonal matrix, W, such that the product
V-W would still yield the same matrix D. Once V is chosen
however, the matrix W, and therefore its parametrization in
terms of -y's would be sufficient to uniquely determine the
NO's.

Variational Procedure

Variations of the energy with respect to the occupation
coefficients with the comstraint that Eq. 5 remains valid

leads to the set of coupled eigenvalue equations for each

geminal:
Zc . H.. = . 50
1 (T 1J(u) euCHJ (50
where

3 . . 2 .
Hij(”) = E(pi,pj) + éij > ZIcUkI I(pi,vk). (51)

v(#) k
For the ground state, the geminal energies, ¢ p? are taken to
be the lowest eigenvalues of the matrices, H(p), and the
occupation coefficients are the components of the correspond-
ing eigenvectors of H(ji). Since the solution of these equa-
tions for a given geminal depends onlthe occupation
coefficients of the other geminals, fhe final set of geminal
energies and coefficients are obtained through an iterative

process. The geminal energies are also given by
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‘3,1 = E(u) + & I(p,v) : (52)
v(#) .
and in Lurn the total energy can be expressed as

E= ZV ,+2XZg, -~ Z I(,v). (53)
a<p ap i K pL<v :

Variations of the energy with respect to the functional
fdrm of the NO's themselves with the constraint that they
remain an orthonormal set of functions, leads to a set of
coupled integrodifferential equations for the orbitals. These
equations haQe been given previously (69,4), but as yet, have
not been cast into an easily usable form because of the presence
of off-diagonal Lagrangian multipliers. An alternative
scheme is employed here for obtaining the NO's, namely to
use the variational principle to determine optimal values for
each of the parameters which enter the NO's discussed above.

The two setls of parameters, the cés and y's, have values
which are determined by a direct minimization of the total
energy using a variational procedure known as conjugate dir-
ections (80). _Solving the set of coupled eigenvalue equations
constitutes a trivial phase of the calculation of the separat-
ed pair wave function and therefore these equations are
solved iteratively for each trial choice of the 7 and vy
parametcrs and Eq. 53 used to compute the total energy.
Determination of the wave function is thus tantamount to
finding an optimal set of ¢ and vy values. The final wave
function is a result of several stages of the variational

procedure. Each stage corresponds to using a particular
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number of atomic orbitals as basis functions. For the first
stage, a minimal basis set is employed and from this point on,
the basis set is augmented by the systematic addition of new
atomic orbitals. |
~ In order to insure that the wave function at the
beginning of each successive stage will be at least as good,
in terms of the energy criterion, as the final result of thé
previous step, a procedure for adding orbitals has been
developed. Suppose that the M-1 old NO's have the expansion,
M-1

w, = kfl Xk Dki (o0ld). (54)
Upon addition of a new basis orbital, M natural orbitals can
be formed. These are defined by keeping the old NO's intact
and Schmidt~orthogonalizing the M-th NO to them (78). The

set of new NO's is then given by the MxM transformation mairix,

D(new):
~ .
Dij(new) = 4 Dij (old) for i,j#M
0 ' for i=M, j#M
b;B for i#M, j=M
B for i,j=M (55)
where
M-1
b. = £ D., (old) a
k=1 ik k
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M-1
a, = - .§ SMj Djk (old) (56)
j=1
and SMJ is the overlap integral between ), and Xj'

In order to continue the miﬁimization process using the
parametrization of Egs. 48 and 49, it is further necessary
to decompose D according to Eq. 45. Since the matrix S(new)
is known, and D(new) has just been determined, the orthogonal

matrix I is obtained as

T(new) = §+1/2(new)-2(new) (57)
‘where ‘

§+1/2(new) = g(new)-Qfl/z(new)~gf(new) (58)
which is analogous to Eq. 47 for.g_l/z, except that here use
is made of the diagonal matrix; §+1/2, formed from the positive

square roots of the overlap eigenvalues. Finally, the angles

7pq corresponding to T(new) are readily found by minimizing

the deviation,

2iijl T;j(new) - Ty, (Y )| (59)

where Tij(ypq) represents the functional dependence of T upon
the angles ypq described in connection with Egs. 48 and 49.
This minimization process is also carried out by the method

of conjugaie directions (80).
Computer Considerations

The execution of this project requires a heavy use of the
electronic digital computer. A fully automatic computer pro-

gram carries out the parameter searches according to the
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directions set forth by the minimization scheme employed until
optimal values of the parameters are found. This implies the
evaluation and thé éontinued re-evaluation of the energy ex-
préssion. The steps in this process will be briefly described.
For a given trial set of the C parameters, a set of
integrals is required. The electron repulsion integrals
needed are as follows: the one-center electron repulsion
integrals, [NN|NN] and [HH|HH], the two-center Coulomb
integrals (81), [NN|HH], the two-center exchange integrals
(82), [NH|NH], and the two-center hybrid integrals (83),
[NN]NH].and [HH|HN]. The N and H used in the integral‘
designations here represent atomic orbitals, Y, centered at
the N or H nucleus respectively. In addition the one~ and
two-center, one electron integrals (84) required are the
overlap integrals, Eq. 43, the kinetic energy integrals,
Eq. 31, and the nuclear attraction integrals, Eq. 32. From

1/2

the overlap integrals, the matrix §— is formed and at

the same time the eigenvalues of § are examined in order to
determine the extent to which the basis set might have
become linearly dependent (85,86). The complete set of
integrals is saved on the computer'’s disc storage and reused
if possible. Only in the cases where the minimization
program has changed one or more y values, does this set of
integrals need to be recomputed. All of these integrals

are computed to an accuracy of at least 10"6 atomic units.
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The matrix, T, is formed from the set of current -y values
via Eqs. 48 and 49 and this is combined with the current §—l/2
to form the matrix D, Eq. 45. This matrix is then used to
trénsform the integrals over atomic orbitals into integrals
over the natural orbitals, Eqs. 36 and 37.

Once the integrals over NO's are available the coupled
eigenvalue equations are solved iteratively until the com-
ponents of the eigenvectors (the occupation coefficients)
have converged to 10"6 atomic units.‘ The energy is finally
obtained from Eq. 53.

Forming the matrix T from the y's, forming the matrix
D, solving the eigenvalue equations, and obtaining the energy
arc phases of the calculation which require very little
computer time. Computing the integrals over the atomic
orbitals takes a substantial amount of computer time, but as
mentioned above, they are recomputed only if variations
within the set of M orbital exponents are encountered. The
transformation from atomic orbital to natural orbital integrals
is also time consuming; this phase however must be performed
for each variation of ¢ or y values. Since there are about
MM-1)/2 different y parameters, the transformation to NO
integrals represents the heaviest burden in terms of computer
time required.

The addition of new orbitals to the basis set constitutes
a very important phase of the calculations. The computer time

required for setting up a new orbital basis by the procedure
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described in Eqs. 54-59, is however minor. Moreover, this
calculation is executed only once for any given atomic

orbital basis set.
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WAVE FUNCTION, ENERGY, CORRELATION

Orbitals for the Imidogen Molecule

A wave function for a diatomic molecule should be an-
eigenfunction of the z—component‘of the orbital angular
momentum, Lz. The spectroscopic designation of the electronic
ground state of the imidogen molecule is 32” which means
that the electrons form an overall triplet spin state, that
the eigenvalue of L, is zero and that the wave function is
antisymmetric with respect to reflection in any plane contain-
ing the molecular axis. Four geminals are used to describe
the eight electrons in the molecule and for descriptive
purposes later, they are given the labels, K Shell, Lone Pair,

Bonding, and Triplet. The first three of these are each

hbuilt out of NSO's in such a way that they have the symmetry
lZ+

o

Thus, they are singlets, have LZ=O, are symmetric with
respect to reflection in any plane containing the molecular
axis and are expanded in NSO's according to Eq. 8. The
remaining geminal will be a triplet with the symmetry, 32_,
and thus Eq. 10 will represent its NSO expansion. Since the
quantities of intefest in this work are spin-independent, the
particular choice made for the z-component of the triplet
spin state is immaterial; however, S _=+l1 has been used.

The product of these four geminals will then have the

correct symmetry for the NH molecule.
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Two coordinate systems are defined: one with its origin
at the nitrogen nucleus, the other having its .origin at the
hydrogen nucleus. The two z~axes point toward each other
along the molecular axis and the two x- and y-axes ére
parallél. A set of atomic orbitals is chosen on each of these

centers and they form the basis set for expandihg the natural
-1/2

orbitals. The symmetric orthogonalization, S ,

preserves
the cylindrical symmetry properties of this set of atomic
orbitals and since the natural orbitals can be chosen to be
symmetry adapted functions (87), the orthogonal transforma-
tion, T, is chosen so as to preserve this symmetry also.
Thus, the angular quantum number, m, from the atomic orbitals,
Eq. 40, can also be used to describe the symmetry of the NO's.
Thus the symbol,‘w[m] implies that the NO has a definite
tfunctional form with respect to the variable ¢ as given by
Eq. 42. B
Té ohtain the required molecular symmetry, the basis
functions have been chosen such that, if m#0 for a pérticular
atomic orbital, then a companion orbital will appear in the
basis set: bothlwil1 have the same values for n,/ and &
but the remaining quantum number will be +|m| in the one and
~|m| in the other orbital. Thus both wim] and w[-m] will be
available as NO's.
For the singlet geminals, if ¢ =w[m], m#0, then
05,1 = w[-m] and the term,

ctwim] (1) wm] (é; + wi-m] (1) w[-m] (2)3 (60)
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will appear in the expansion of the geminal. For the triplet
geminal, all of the NO's designated X4 will be functions
w[m], with m>0 only and the corresponding NO's, s will be
the functions, w[-m]. Thus each term of the geminal expansion
will assume the spatial dependence,

cfw[m] (1) w[-m] (2) - w[-m] (1) wim] (2)3 (61)
in accord with Eq. 10. By this construction, each of the

geminals will have the desired symmetry properties.
Orbitals for the Nitrogen Atom

For an atom, the wave function must be an eigenfunction
6f L2 as well as Lz‘ The electronic ground state of the
nitrogen atom has the spectroscopic designation, 4S, denoting
a quartet spin state being totally spherically symmetric.
Three geminals plus one orbital are used to describe this
seven electron system. Two of the geminals are used for the
description of the "lsz" and "252" electron pairs and are
labelled K and L respectively. These each have the symmetry,
lS. The remaining geminal is again a triplet, as before,
with SZ=+1 and the orbital is taken to have épin a. The
product of this triplet geminal and orbital are used to
provide the description of the 2p3 configuration.

In Lhe atomic case, the spherical symmetry properties of
the basis functions can be préserved on forming the NO's so

that the latter will have a definite angular dependence as

given by Eq. 41 and consequently the designation, w[ﬁ,m].
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To obtain the required atomic symmetry, the basis functions
have been chosen such that, if z%o, 2/+1 atomic orbitals will
appear in the basis set: each will have the same value for
n, f/, and ¢ but there will be one function with each of the
allowed m values. Thus the complete set of NO‘'s, w[/,m],
(m=f4,4~1,...,-4+1,-4), will be available.

For the singlet geminals, if f#0, the term,

y - o
ct £ wlg,m] (1) wlg,m] (2)3 (62)
m=-}

will appear in the expansion of the geminals. For the
triplet geminal, the NSO expansion will be limited to one
term where X=w[+1,+1]a and Y=w[+1,-1]a. The lone orbital
will be taken as Z=w[+1,0]a and therefore, this geminal-

orbital product will appear as follows:
Fw[+1,+1] (1) wl+1,-1] (2) - w[+1,-1] (1) wl+1,+1] (2)3
wl+1,0] (3) - a(l)a(2)a(3). (63)

- The partial antisymmetrizer, Ey. 22, will produce an overall
quartet S state oul ol this product by properly permuting the
three electrons between the geminal and orbital. The anti-
symmotrizéd, thfee particle geminal-orbital product will be

cquivalent to the singlet determinant,
twl+1,+1] (1) wl+1,-1] (2) wl+1,0] (3)] -a(l)a(2)a(3). (64)

The total atomic wave function has therefore been
constructed essentially as an antisymmetrized product of

strongly orthogonal group functions in the sensé of McWeeny
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(88). Here, two of these group-functions}are the two particle,
lS geminals, K and L, while the remaining group function is the
three particle, 4S determinant, Eq. 64. This latter group
function will be labelled Q and called the quartet group, by

analogy to the naming of the triplet geminal of NH,
Atomic Orbital Basis Sets

The particular afomic orbitals comprising the basis sets
for the imidogen molecule are given in Table 1. (For con-
ciscness, the AO's with quantum number, m<0, have been
omitted from the table,) The orbital exponents are functions
of R and the table is arranged accordingly. For each value
of R, the individual z's should be obtained by independent
minimization procedures.

For R=1.9614 bohrs, a complete minimization with respect
to the T parameters has been undertaken. For all other values
of R, the minimization process has been carried out with re-
-spect to classes of ¢'s in order to expedite the calcula-
tions. The division of AO's into classes is made on the
basis ol the expectation value of the distance from the AO
origin, <ra>,

<r > = JdV o x; r X5 - (65)

From the values given in Table 1 for this quantity, the AO's
are divided into three classes: inner nitrogen, outer
nitrogen and hydrogen orbitals. The inner orbitals, with

<rﬁ> less than 0.4 bohrs, are in fact the major contributors
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to the NO's which provide the K shell geminal description
while the remaining orbitals are used mainly to describe
the outer electfon pairs.

This grouping of AO's into classes has been used to
parametrize the {'s in the following way. For each class of
orbitals, an R-dependent scale parameter, n(R,k), has been
defined such that the value of a ¢ for an AO in the kth claés
for the distance R will be related to the value of the same
AO ¢ for R=1.9614 by the relation

z(R) = n(R,k) - £(1.9614). (66)
The three scale factors are found by minimizing the total
energy with respect to these n's. In addition, an overall
scale factor is used for each value of R which scales all
of the ¢'s by the same factor; the value of this parameter
is found by the ehergy minimization procedure as well., There-
fore, for each value of R, there are four orbital exponent
scaling parameters and their effect on the orbital exponents
- can bhe seen in Table 1.

It is desirable to construct a basis set for the nitrogen
atom such that the total wave functions of the atom and
molecule will be of comparable accuracy. This is accomplished
hy choosing for the atomic basis set, the same twenty-two
AO's centcered on the nitrogen nucleus which are used for the
molecular basis set. The individual ¢'s for the atom,

however, are found by an independent minimization procedure,

the results of which are given in Table 1.
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Natural Orbitals and Occupation Coefficients

The natural orbitals are obtained from the basis set by
means of the transformation matrix, D, given in Eq. 45. The
optimal values found for the parameters, v, will be exhibited
by means of D rather than by tabulating the y*'s themselves
gince Egs. 57land 59 allow the latter to be calculated from
D for any particular orthoéonalization procedure desired.

Each natural orbital in Table 2 is given a label of four
symbols. The first designates the geminal in which it is
used, the second specifies the order of importance of the
given NO within the geminal, the third indicates the symmetry
type of the NO, and the fourth gives the order of importance
of the NO within its symmetry type within its geminal. Thus,
the NO label, "Bonding 371", denotes that NO of the bonding
geminal, which has the third largest occupation coefficient,
has pi symmetry and within this symmetry has the largest
occupation coefficient. The numbering of the AO's on the left
hand side of the table corresponds to the numbering of the AO
basis functions given in Table 1. The occupation coefficient
(OC) for each NO is given below the corresponding column of
D matrix coefficients in the table.

For each internuclear distance, R, of interest for the
molecule, optimal values for thef and y parameters must be
found. The ¢ variations, as a function of R, which have been

discussed above, alter the basis set and in turn the natural
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orbitals. Changes in the y's alter the form of the NO's
only.

For R=1.9614 bohrs, the full minimization procedure was
executed with respect to the individual y's as well as the {'s,
In order to expedite the minimization problem with respect to
the v's for othér values of R, a grouping of these parameters
was employed wherein‘all v's within a group were varied si-
mult ancously rather than individually. Since there was a pos-—
sibility that this grouping of terms might be too rigid, some
overlapping of groups was allowedlfor in order to help offset
the effects of this limitation. Since a particular angle,
qu’ essentially governs the interaction between the NO's,

p and q, the following groups were chosen: (1) the set of all
v*'s connecting o orbitals with other o orbitals; (2) the set
of y's connecting ® with other m NO's; (3) all y's connecting
K shell NO's with other K shell NO's; (4) all y's between the
K shell and outer shell orbitals; (5) the y's between the
principal lone pair NO with all other NO°’s; (6) the y's be-
tween the principal bonding NO with all other NO's.

Table 2 lists these data pertaining to the natural
orbitals of NH for the internuclear distances, R=1.8, 1.9,
1.923, 1.9614, 2.0, 2.05, and 2.10 bohrs. For the nitrogen
atom, the D matrix was found by an independent minimization
with respect to the individual 7y's. This D matrix and the

nitrogen atom OC's are presented in Table 3.
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Conlour maps have been drawn to supplement the
description of the natural orbitals given in Tables 2 and 3.
They are drawn in a plane containing the molecular axis and
perpendicular to the nodal plane of the m orbitals. A pdr-
ticular solid curve connects coordinates in the plane for
which the orbital has a particular positive value. The dashed
curves connect coordinates at which the orbital has particular
negative values. The zero contour curves are drawn with dotted
lines. The highest and lowest contour values drawn are

3/2 and the increment used is 0.05 bohr—3/2. The

+0.50 bohr~
positions of the nuclei are indicated by the notches drawn
along the borders of the map and by the labels along the
right-hand side. For NH, the NO's correspond to the inter-

| nuclear distance, R=1.9614 bohrs.

The principal natural orbitals are seen to be those
having the least number of nodal surfaces cutting the contour
plane. The energetically less important NO's have smaller
occupation coefficients and more nodes in general. The
influence of the hydrogen atom can be seen by comparing NO's
in NH and the N atom. The K shell NO's of NH (see NO Con-
tour Maps 1-4) show only a very slight asymmetric deviation
when compared to ithe atomic K shell NO's (see NO Contour Maps
21~-23) whereas the outer shell NO's are all influenced
greatly by the H atom.

Because of the higher symmetry of the atom, certain NO's

in the molecule will coalesce in the separated atom limit.
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For instance, when R — o, the K Shell 3wl and K Shell 403
natural orbitals in NO Contour Maps 3 and 4 will form the com-
pdnents of the nitrogen K 3pl natural orbital given in NO

Contour Map 23.
Energy

Correlation energy

The total electronic energy, E, calculated from the
separated pair (SP) wave functions for imidogen as a
function ot R is given in Table 4. Also given is the energy
of the Slater determinant obtained by using just the prin-

cipal natural orbital (PNO) of each geminal:

E(PNO) = V

Na * Z Euo,p0) + Z I(p0,v0) (67)

B p<o

where these quantities have been defined in Eqs. 29, 36 and
37. This wave function and its energy are very close to those
of the Hartree-Fock approximation (4,89) and the difference
between the SP and PNO energies therefore essentially repre-
sents the correlation energy. It is listed in the third
section of Table 4.

A decomposition of these energies is also contained in
Table 4. In addition to the nuclear repulsion VNH’ it shows
the contributions from the one- and two—glectron operators
which form the Hamiltonian for NH, viz; the nuclear-electronic

attractions, VN and VH, electronic repulsion, V125

electronic kinetic energy, T. The new symbols are defined

and

as the expectation values,
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v, = <§ vai> | (68)
vVlZ =( = ri.—l> | | (69)
i<j J | .
<'§: T1> ’ | - (70)
1 )

where the definitions of Eqs. 31 and 32 have been used.

T

Al

The decrease in V,, on going from the PNO to the'full separated
pair wave function represents thé most important effect of
correlating the wave function. As expected, the change in
kinetiC>energy is‘the largest among the one-electron properties ,
but the huclear attraction energy changes are themselves
signifiCant.

Equilibrium distance

The virial theorem can be used to obtain an estimate of

the equilibrium internuclear distance, Re' It is written as

follows:
OE _ 3E  _ _
T+E+R—§ﬁ+§p135;—o, : (71)

where P; represents each of the independent variational
parameters entering the wave function. On the assumption
that all of the parameters, P;> have been assigned optimal

values, the last term in Eq. 71 is taken to be zero and thus,

=&~ (T+E /R (72)

Values of this quantity are given in Table 4. In Graph 1,

the negative of the kinetic energy is plotted along with the
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total energy for both the SP and PNO wave functions. The
value of R corresponding to the intersection of the E and ~T
curves is taken to be Re(virial). It has the value 1.965
bohrs for both cases, which deviates from the experimental Re
of 1.9614 bohrs by ~0.2%.

Dissociation energy

The separated pair dissociation energy of the mélecule is
obtained as the difference between the SP energy value ot the
separated atoms and the value at the minimum of the SP molecu-
lar energy curve and similarly for the PNO dissociation
energy. The calculated values are as follows: De(SP) =
2.65eV and De(PNO) = 2.00eV. These are to be compared with
the experimental dissociation energy corrected for zero-point _
energy. Cade and Huo (1) suggest De(exptl) = 3,80eV to be
the most internally consistent of the experimental values
(33-35,90).

The difference between the PNO and experimental
dissociation.energies for diatomic hydrides is due to the
change in correlation energy between the molecule and its
separated atoms. The improvement of De(SP).over De(PNO)
represents about 36% of the PNO-experimental difference and
it will be seen to be due to the inclusion of intrageminal
correlation energy effects in the bonding geminal alone.

The remaining error in De is judged to be due to intergeminal
correlation energy changes within the valence shell of the

molecule. This conjecture draws support from a similar
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conclusion of Bender and Davidson (91) who estimated that
about one~third of the atom-molecule correlation change
between F and HF is due to correlation within the HF bonding
geminal and the remainder is due to inter-pair correlations.

Total energy

The total "experimental' energy of NH is calculated from

the equation:

, 7 s
E(exptl) = 153 (I°P')i +E(calc,N )—O.5+De(expt1)+E(rel) (73)
where (I.P.)i is the ionization potential of the i~th
electron of the N atom; E(calc,N;s) is the Pekeris (92,93)
two-electron, N"5 atomic energy; -0.5 is the energy of the
hydrogen atbm; De(exptl) is the experimental dissociation
energy mentioned above; and E(rel) is the sum of all pertinent
relativisiic energy effects. The accuracy of E(exptl) is
limited by the accuracy with which De(exptl) is known: using
their suggested value for De(exptl), Cade and Huo (1) recom-
mend a value for E(exptl) of -55.252 hartrees. The separated
pair energy of -55.03352 hartrees is clearly not within the
range of chemical accuracy but the SP wave function neverthe-
less has its usefulness and moreover represents the most
accurate of previous calculations (1,59-68) on the 32—
ground state of the NH molecule. For comparison, a list of
previous theoretical investigations on the imidogen

molecule has been prepared in Table 5. Only ab initio

calculations have been tabulated and for those cases where
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the energy has been calculated at more than one value of R,
only the lowest value of E obtained is given along with the
corresponding value of R. The remarks given in the table
are intended to briefly describe the various techniques and
types of basis functions employed. The table does not
include semi-empirical calculations (54-58).

Dependence upon internuclear distance

The calculations on NH reported by Cade and Huo (1),
which are here referred to as the SCF results, are believed to
gé Qery close approximations to the true Hartree-Fock sol-
utions and thus they have'been used as a guide for judging
the accuracy of the present wofk. In Graph 2, the total
energy has been plotted as a function of R for the separated
pair and PNO wave functions and for the Cade and Huo SCF
wave function. The PNO and SCF energy curves should be
grossly similar although they differ in detail.

A fair difference in curvature is seen in Graph 2
between the PNO and SCF curves and this is due to the choice
of a non-perfect minimization procedure. The reason for this
choice is that the results of the previous section as well
as those of the subsequent section show that essential cor-
relation energy contributions are not recovered by the SP
wave [unction. Therefore, the efforts required to execute
a more perfect minimization process are not justified.

For internuclear distances less than about 1.8 bohrs or

greater than about 2.1 bohrs, a more complete minimization of
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individual parameters would seem to be necessary. Within
these limits however, the parameters entering the separated
pair wave function are ekpected to have close to optimél
- values. The NH drbital exponents given in Table 1 and the D
matrices given in Table 2 as well as calculations of other
properties of imidogen have thérefore been restricted to this
range of internuclear separations. |

It is also true that the separated pair wave function
does not dissociate into species with thé required spin
characteristics in the limit when R— o. (The SCF function
also dissociates improperly but its behavior for large R is
not the same as the SP wave function.) 1In order to achieve
the proper dissociation properties, the total SP wave funption
could be expressed as a linear combination of separated pair
wave functions but such a procedure is beyond the scope of
the present work. Even with a perfect minimization procedure,
this dissociation problem would limit the range of inter-
nuclear distances over which the NH separated pair wave

function will be adequate.
Correlation Energy Analysis

The improvement in the energy of the separated pair wave
function over the SCF result is due to the inclusion of
certain electron correlation effects. In general, the separat-
ed pair wave function furnishes a means of recovering intra-

geminal correlation but no direct facility is provided for
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recovering iﬁtergeminal correlatiéns. The analysis which
foliows_is.intended to provide'somé inéight~in the separated
pair appfbximation and its ability fo handle the.correlation
éffects Whiéh arise in NH. In Table 4, a décomposition'was
made of the ﬁnatural orbitai correlation energy"; AE; definedb
| as‘the difference between the tofal SP energy and the PNO
eﬁergy. The value of AE obtained with this definition differs.
from the cofrélation energy defined with respect to the SCF
enefgy'by 9%'for'wave'fUnctions correspondihg.to R=1.9614 bths.

Geminal analysis

The corfelation energy'is defined by:
AE = E - E (PNO) a L (14)
- where E and E(PNO) are given by Eqs. 33 and 67 respectively.

According to these equations, the correlation energy is

decomposed,

AE = ZAE(p) + £ AI(p,v), (75)
13 ' p<o

into intrageminal contributions, AE(p),

AE(p) = Z AE(pi,pj), - (76)
ij

and intergeminal interactions, AI(p,v),

AI(P,U) = Z AI(“i:Dj)Q (77)
ij _ ‘

where by virtue of Egs. 33-35,

AE(ui,pj) = ¢y c“jEE(ui,uj) - éijE(uo,uo)] (78)
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2

AL (pi,vj) = i

c?)J.[I(pi,Dj) - 1(10,00)]. (79)

According to the remarks in the paragraph beginning after Eq.
39, the cnergy lowering, AE(u); arises from correlation between
two electrons within the p-th geminail whereas, AI(p,n) repre-
sents an energy change due to an electron pair with one partner
in geminal p and the other in geminal v.

Table 6 lists the triangular matrices of intrageminal
and intergeminal contributions to the PNO energy, E(PNO), and
those to the correlation energy, AE. The diagonal elements.of
the two matrices are E(pO,p0) and AE(p); the corresponding
off—diagonal elements are I(p0,v0) and AI(p,v). The sum of
these PNO and‘correlation terms plus the nuclear repulsion,
VNH’ gives the total SP energy E.

Certain features of the geminal correlation energy
matrices are to be noted. The diagonal elements are all
negative whereas the off-diagonal elements are both positive
and negative, For each of the NH and N wave functions, how-
ever, the sum of these intergeminal terms does give a net
negative contribution to the correlation energy but it repre-
sents only 4.5 to 2.5% of the total AE. Therefore, the
energy gains recovered by the SP wave function can indeed be
" ¢lassificd as being derived almost entirely from intrageminal
correlations. Furthermore, from Table 6, the source of the
intrageminal energy lowerings can be ascribed principally to
correlations within the K shell and bonding geminals. The

triplet and lone pair geminals give only slight energy gains.
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For the triplet, this is expected since the two electrqns
'forming.tﬁe_geminal have parallel spins, For the lone pair,
this result is Qontrary to expectations and therefore this
situation will be further investigated below.

The,chahgés in the diagonal terms, AE(p), as R increases
are the smallest for the K shéli and lone pair geminals. The
'éhanges in the triblét intrageminal term, although 1arger
than the changes found in the K shell and lone pair terms;
are also fairly small. Only the bonding infrageminal cqrrela-
tion energy cbntribution is substantially affected by increas-
ing the intérnuclear distance. The change in this one term
is more than an order of magnitude greater than the sum of the
Chénges in ali of the other intrageminal and 511 of the inter-
geminai terﬁs combined. This is the result of the.incréasingly
important rolé blayed‘by the secondary bonding NO's in the
NH wave function as R becomes large. The reason for this
dominating effect is not too clear at the present; perhaps it
is due to the omission of correlations between the bonding,
lone pair and triplet geminals.

In.fhe nitrogen atom, the quartet group, which congsists
of the bonding orbital and triplet pair, is described by a
single three-particle determinant ahd thus there is no intra-
group correlation energy available‘from this source. The
nitrdgen,K and L geminals have ihtrageminal correlation

energies which are larger than those present in the molecule
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and intergeminal correlations which are negative but smaller
in magnitude than their molecular counterparts.

Natural orbital analysis

A further decomposition of the correlation energy
exhibits natural orbital correlation effects. The total
intrageminal correlation energy contribution of the p-th

geminal is decomposed as follows:

AE(p) = I AE(pi) (80)
i(#0)

where the contribution of the pi-th NO is defined as

AE(pi) = AE(pi,pu0) + & AE(pj,pi). (81)
J

[This differs from the definition used by Miller and
Ruedenberg (4, see Eq. 64).] For all secondary NO's in the
K shell, lone pair and triplet geminals of NH, this quantity
can be approximated to an accuracy of 10—5 hartrees by the

following:
AE(pi) =~ AE(pi,p0)+[AE(uO,pi) + AE(pi,pi)] (82)

where the second term in brackets is the NO self-energy and
the other terms are the exchange interactions with the
principal NO of the geminal. For NO's in the bonding geminal,
this relationship holds true to an accuracy of only 10-4
hartrees bhecause of the exchange interactions involving the
strongly occupied secondary Bonding 202 natural orbital. For

most of the NO's, the two terms in brackets in Eq. 82 are

about equal in magnitude but opposite in sign and therefore
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the remaining exchange integral governs the intrageminal
corrclation gain. Both AE(pi,p0) and AE(pi) are given in
Table 7 and the principal exceptions to the rule are seen to
be the Lone Pair 202, Bonding 202, Bonding 37l and Bonding
403 secondary NO's.
The total intergeminal contribution arising from the

pi-th NO is defined by

AI(pi) = = Z AI(pi,vj), (83)
o(A) 3

and for the NH wave functions, this quantity can be

approximated by

AI(pi) ~ I  AI(pi,v0) (84)
v(#L)

since all secondary-secondary intergeminal interactions are
less than 10—6 hartrees. From Table 7, only four secondary
NO's are seen to have substantial values for AI(pi) and these
are the same NO®s mentioned above. Three of these, Lone Pair
202, Bonding 271 and Bonding 403, contribute more energy from
intergeminal sources than they do from intrageminal sources.
The total contribution, A(pi), from the pi-th NO to the
correlation energy is defined as the sum of its total intra-

geminal and intergeminal contributions:
A(pi) = AE(pi) + AI(ui). (85)

From the tabulated values of this quantity and from the

occupation coefficients listed, it can be seen that within



46

each geminal, the NO's which are energetically more important
have occupation coefficients with larger magnitudes.

The energetically most important secondary NO is the
Bonding 202 function. The K Shell 252 natural orbital is
next in importance and gives an energy lowering that is ohly
half as large. Next, the K Shell 37l, K Shell 403 and
Triplet 272 secondary NO's give correlation gains that are
about one~fourth that of the Bonding 202. The Lone Pair 202,
Bonding 37l and Bonding 403 orbitals, which are next in
importance, give about one-eighth the gain of the Bonding
2062 orbital. The NO*s mentioned here are the principal sources
of the energy lowering in the SP wave function; the remaining
NQ”s give relatively unimportant coﬁtributions to. the total
energy 1owering;

Assignment of natural orbitals to geminals

There exists an "exclusion principle" for NO's between
geminals because of the strong orthogonality condition and in
some cases, it is not obvious in which geminal, certain NO's
will be most effective. In order to determine the amount of
correlation encrgy which different NO's can recover in dif-
ferent geminals, calculations were performed in which all of
the secondary natural orbitals were placed successively in
each of the geminals. 1In each case the eigenvalue equations,
50, were solved for the occupation coefficients and all of

the orbital correlation energy quantities given in Table 7

were recomputed. The results are given in Table 8. Here,
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the NO's are still identified, in the left-hand column, by
the labels they have in Table 2.

The first section of Table 8 lists the results of a
calculation where all secondary NO's are placedvin the K
shell geminal. It shows that only the NO's with labels "K
Shell” are effective in correlating this geminal. The second
section of the table lists the results of a calculation where
all the secondary NO's are used in the lone pair geminal.
Likewise, the third and fourth sections contain fhe results of
calculations with all of the secondary NO°’s being assigned to
the bonding and triplet geminals, respectively. It should‘
be mentioned that the energy lowering, A(pi), for any par--
ticular natural orbital, pi, is essentially independent of
which other NO's are present in the geminal, since only the
interactions of the pi-th NO with the PNO are substantial.

From the table, it can be seen that the NO's giving
large correlation energy lowerings in one geminal usually do
not give significant gains in other geminals. This is es-
pecially true of the NO's: K Shell 202, K Shell 371, K Shell
403, Lone Pair 202, Bonding 202, Bonding 37l, Bonding 403 and
Triplet 272. Thus, the use of geminal names for labelling
these‘NO's seems justified. The only exceptioh is the Lone
Pair 361 natural orbital which gives a larger correlation
gain when placed in the triplet geminal instead of the lone
pair geminal. It is nevertheless associated with the lone

pair in order to build wave functions having nearly similar
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properties for the molecule and atom, and in the latter, the

sel of 3d atomic orbitals are used for the L géminal descrip-
tion and are prohibited from being used in the triplet atomic
geminal.

The total correlation energy recovered within each
geminal in this way is given in the table. It might be
possible to achieve slightly larger gains in éach geminal if
further minimization of the y and ¢ parameters would be
carried out with the different arrangements of NO's, but the
investment of computer time required for such a project Was
not cohsidered warrented.

Limitations of the separated pair approximation

The most remarkable feature of the correlation energy
analysis given above is the unifofm inability of the separated
pair wave function to provide for correlation in the lone
pair geminal in NH, This is illuminated by examining the
correlation situation in the L geminal of the beryllium atom
(4). The total intrageminal correlation of the L geminal of
Be was found to be -0.04928 hartrees, 96% of which was derived
from the use of the L2p NO. This correlation arises from the
near degeneracy (4,94,95) between the L2s and L2p NO's which
results in the large occupation coefficient of the L2p NO and
the consequent strong interaction with the L2s PNO. If this
L2p NO is removed from the L geminal, the L shell intrageminal

correlation energy in Be drops to less than -0.002 hartrees.
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In the N atom, a set of L2p NO's do exist (see NO
Contour Map 30) but they constitute the quartet group PNO.
Being thus occupied, the constraint of strong orthogonality
precludes the use of these NO's in ény other geminal., In
NH, the x and y components of the L2p NO form the triplet
PNO (see NO Contour Map 18) while the z component of the L2p
shares in the formation of the bonding PNO (see NO Contour
Map 10). Again strong orthogonality renders these NO's
unavailabie for usage in the lone pair geminal. It is this
unavailability of the L2p orbitals for the lone pair geminal
that depresses its intrageminal correlation energy contri-
butions in N as well as NH.

One might consider placing the L2p NO's in the lone pair
geminal and then, for strong orthogonality reasons, dropping
them from being used as PNO's in the other geminals. A
calculation with a wave_function of this type was performed
where the Triplet 17l and Triplet 17l NO's were removed from
the triplet geminal and placed in the lone pair geminal. The
eigenvalue equations, 50, were solved and a correlation an-
alysis made. The gain in lone pair intrageminal correlation
was found to be -.03240 hartrees which agrees closely with
the expected gain of (2/3)-(0.96)-(~-0.04928) hartrees (only
two out ol three 2p components were used). However, the
triplet geminal, which now had.to use its 272 NO‘'s as its

PNO's, suffered a loss of over 2.7 hartrees and thus the use
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of the Triplet 171 NO's in any other geminal but the
triplet was found to be prohibited.

Strong orthogonality is thus seen to be a sévere
handicap in handling intrageminal correlation energy effects
in cases where the necessary correlating NO's must be occupied
as PNO's in some other geminal or where a particular secon-
dary NO can be useful for correlation in several different
geminals. For NH, a relaxation of the strong orthogonality
condition between the three outer shell geminals might prove
sufficient to relieve this situation. 1In addition some of
the pair correlation energy gains presented in Table 8 might
prove to be additive with the strong orthogonality constraint
removed. However, even with the most optimistic estimates
for the total intrageminal correlation energy gains, there
is still a substantial amount of correlation energy unre-
covered. For instance, assuming that ~1 eV were available
as intrageminal correlation in each of the singlet geminals
and ~0.3 ¢V in the triplet geminal, there would still remain
6.8 ~3.3 == 3.5 eV to be accounted for. It must be concluded
that the source of this energy difference has to be attributed

Lo intergeminal correlation effects.
Limited-Configuration Separated Pair Approximations

Recently, attention has been drawn to the utility of
wave functions containing only a limited number of configura-

tions beyond the principal term (96-100). 1In this regard, it
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is of interest to study the effect on the molecular energy
curve for NH of omitting certain secondary natural orbitals
from the full separated pair wave function.

From the discussidn of the correlation energy, it is
realized that only the K shell and bonding geminals are‘sig—
nificantly enhanced by'the inclusion of secondary NO's in
the SP geminals. Thus one limited wave function consists of
the PNO’s and the K Shell 202, K Shell 371, K Shell 403, and
Bonding 202 secondary natural orbitals. This wave function
is denoted "K + B" and has a comparable nitrogen atom wave
function consisting of the PNO's and the K 2s2 and K 3pl
secondary NO's. These NH and N wave functions both have
equally correlated K shells and only the Bonding 202 function,
which has no counterpart in the atom, has been added to the
molecule. An even simpler set of wave functions denoted by
"B" is obtained by using only the PNO's for the atom and aug-
menting this wilth the Bonding 202 natural orbital for the
molecule.

Table 9, lists the energy results corresponding to the
SP, K + B, B, and PNO wave functions of the NH molecule and
the nitrogen atom. For each of the approximations, the sum
of the hydrogen atom energy plus the corresponding nitrogen
atom energy is subtracted from the molecular energy to give
the binding energies.

In Graph 3, it is seen that the B and PNO curves are

not parallel. This behavior is due of course to the inclusion
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of the single correlating NO in the bonding geminal. Since
the SP, K + B, and B curves have quite similar curvatures,
it is concluded that the R-dependence of these curves is
governed essentially by the PNO's and the Bonding 202
function. Although the shape of the SP energy curve is
retained by the B and K + B wave functions, the absolute
values of the total energy and binding energy are affected.
For the B and K + B approximations, the total energy loss
amounts to 1.11 eV and 0.45 eV respectively and the loss of
the binding energy is 0.11 eV and 0.30 eV for the two wave

functions respectively.
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OTHER PROPERTIES

Spectroscopic Analysis
In order to relate the calculated potential energy
curve to spectroscopic results, the analysis of Dunham (101)
is the most practical approach. It involves fitting the
potential curve by a polynomial of which the terms of order
higher thén the fourth are expected to be negligible. The

first four terms are written in the form,
ER) = E(R) + ap2 (1 + ap + a0 (86)
e o 1 2P

where

o= (R-R) /R (87)

Then the standard spectroscopic constants; Be(rotational
constant), ae(rotational anharmonicity), ke(force constant),
we(vibrational frequency), and wexe(vibrational ankarmonicity),
can be simply calculated from 2, 24 and a, (101, Eq. 15).

In the present case, the seven points between R=1.8 and
2.1 bohrs have been chosen to determine the polynomial con-
stants, ags a1 and az. This is accomplished by finding the
least-mean-square fit of the points on the energy curve to a
fourth-order polynomial, determining Re’ the R value for which
this quartic has its minimum, and then carrying out a trans-
formation to the reduced variable p of Eq. 87. This gives
the desired power series expansion of E about the equilibrium

point Re’ The resulting spectroscopic constants are listed
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in Table 10; caution should be used in judging them,hdwever,.
since their reliability is 1imited‘by the fact fhat the

number of points used for the determination of the fourth-
order fit is relatively small. A self-consistency check is
provided by comparing the equilibrium internuclear distances
obtained from the Dunham analyses with those predicted using
the virial theorem. The quantities, Re(virial) and Re(Dun—
ham), agree to 0.03 and 0.8% for the SP and PNO wave functions
respectively.

The accuracy of the rotational constant, Be’ is due to
the close agreement of Re(Dunham)‘With the experimental value.
The three constants, Oy s ke and Mg s depend strongly on the
curvature of the E versus R curve as well as on Re. Since
a full minimization of all wave function parameters could
be executed for only one value of R, namely R = 1.9614 bohrs,
whereas for all other R values, the minimization process
was systematically restricted as described in a previous
section, the resulting SP and PNO energy curves are expected
Lo rise more sharply than the true energy curves as the
distance from R = 1.9614 bohrs increases. This effect is
especially noticeable for the constants ke and Wy which
depend on Re and 1, only. The extremely close agreement of
the SP value obtained for the constant O Xg s which depends
upon the anharmonicity terms a; and a, as well as the distance
Re, is probably due to a fortuitous cancellation of errors

in the coefficienﬁ;al and ag. The energy, E quoted in

e’
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Table 10 is that obtained from the Dunham polynomial with
the given coefficients and thus corresponds to E(Re) in Eq.
86.

For comparison purposes, an "experimental" energy curve
for NH has been constructed by finding that polynomial in
ihe reduced variable p which, when expanded about the point
Re(exptl), gives the experimental values for the other speé~
troscopic constants. The resulting "Dunham polynomial' is
plotted in Graph 4 with the SP and PNO Dunham functions. As
expected, close agreement is obtained for the minimum of the
curves but further minimization of wave function parameters
is necessary in order'to obtain closer agreement for the
shape of the curves.

Since the systematic deviations in E(R), introduced by
the choice of minimization technique, increase as the distance
from Re increase, one might expect to obtain better results
by limiting oneself to a closer range on the E(R) curve.
There is, however, a practical limit to such a narrowing of
the range because any polynomial fit based on a number of
points on the E(R) curve can be meaningful only to a degree
n given by the condition that the n-th order differences, An,
remain larger than the numerical inaccuracies in the values
of E(R) available at the given points. Because of this, it
is not possible to determine the higher expansion coefficients
if all points are chosen too close to Re' Therefore, it is

necessary to include points of E(R) taken over a certain
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-minimum range around Re in the polynomial fit. 1In the case
of NH, the range, R = 1.8 to 2.1 bohrs, was considered to be

the best compromise.
One-~Electron Expectation Values

The one-electron properties of a wave function provide
information about the electronic structure present in the
molecule. _For the separated pair wave function, the ex-
pectation value of a one-electron operator; p(l), is obtained

from the first order density matrix given in Eq. 26:

P(SP) = N © fdr, p(D)y(1|1) ' (88)
whence
P(SP) = fi c“fp(ui) (89)
with
P(pi) = (u,2i|plp,21) + (u,2i+1|plp,2i+l) (90)

(see Eq. 38). The geminal one-electron property, P(p), is
obtained by summing only over i for fixed p in Eq. 89. The

PNO property is defined as

P(PNO) = Z P(po0). (91)
N

The total effect of correlation on the value of the

propertly is then given by

P(CORR) = Z AP(p), (92)
K

where the geminal correlation property, AP(p), is

aP@w) = £ e ¥ [Pui) - P(u0)]. (93)
. 1
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The quantities, P(u0), AP{(p) and P(u), for each geminal
as well as the totél quantities, P(PNO), P(CORR) and P(SP),
are given in Table 11 for a selection of twenty one-electron
operators. This decomposition refers to the wave function at
the experimental equilibrium distance Re(exptl) = 1.9614
bohrs. The columﬁ labeled % contains the perbentage of P(SP)
contributed by P(CORR). Most of the expectation values are
self-explanatory since the corresponding operators are simple
functions of spherical polar coordinates, (r © ¢), cartesian
coordinates, (x y z), or elliptic coordinates, (£ n ¢), de-
fined with respect to axial systems with origins located at
the nitrogen and hydrogen nuclei. The only exceptions are d
and Q, which represent the intrinsic molecular.dipole and
quadrupole moments respectively. To avoid geometrical multi—
pole effects,.these quantities are defined with respect to an
origin situated at the center of charge of the molecule. Due
to the cylindrical symmetry of NH, the center of charge lies
on the molecular axis and is located between the nuclei at the
distance ¢ from the nitrogen atom given by

c = (RNH + ? <zNi>)/16 (94)
where ZN4 is the component along the molecular axis of the
radius vector from the nitrogen nucleus to the i-th electron.
Using a cartesian system located at ¢ with its z-axis
pointing toward the hydrogen atom, d and Q are given by the

following standard definitions:
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— —
a=lzz Z_-z& > (95)
a 1
_ 2 '
Q- 27,2 -2 [3<z 2> - < 2] (96)

in which Z_ is the charge on the a nucleus,‘g and Z__
Q ca ci

are the vector distances along the molecular axis from the

center of charge to the a nucleus and the i-th electron re-

spectively, and roi is the radial distance from c to the

electron i. For the NH wave functions given here, the

intrinsic quadrupole moment tensor is diagonal and has the

form:
-1/2 0 0
Q=Q 0 -1/2 0
0 0 1] . (97)

.For the decomposition of d and Q into geminal
contributions, the nuclear charges have been divided amongst
the geminals in the following way. The K shell, lone pair
and triplet geminals are each associated with two nitrogen
protons. The remaining nitrogen proton and the hydrogen
proton are assigned to the bonding geminal. For the four
resulting "geminal" charge distributions, d and Q are calcu-
lated with respect to the same center of charge, c, given in
Eq. 94. For d, one obtains intrinsic geminal dipole moments
because each of the charge distributions consists of an

equal number of positive and negative charges. For Q, one

obtains geometrical geminal quadrupole moments; however,
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because of the common origin at c, the four géminal moments
can be added to give the total intrinsic molecular quadrupole
moment .

The role played by the secondary natural orbitals is
that of augmenting the description of the geminal furnished
by the PNO. For the K shell, lone pair, and triplet geminals,
the effect of correlation is practically nil for all bf fhe-
properties listed. The bonding geminal is the one that is
influenced most by its secondary NO's, especially in terms of

the bonding dipole and quadrupole moments. = The percentage
change in the property value due to correlation is quite
small in general but it is to be remembered that even the
correlation energy recovered by the SP wave function repre-
sents only about 0.11% of the total energy.

In Table 12, the R dependence of P(PNO), P(CORR), and
P(SP) is displayed for each of the properties over the re-
stricted range of internuclear separations. Graph 5 gives
P(PNO) and P(SP) for the properties, d and Q, as functions
of internuclear distance. The remaining properties are
plotted against R in Graphs 6-9 but since P(CORR) is so small

for these quantities, only P(SP) is given.
Two-Electron Expectation Values

The two-electron properties of a many electron system
are those influenced most by the inclusion of correlation

in the wave function. Although the separated pair
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approximation takes account of only a limited amount of
correlation,’it is of interest to examine the changes which
are produced in the values of some two—electron.expectation
values for the wave functions. The four operators to be

studied here are

-1 2
ig 5 Tyg , COS 912,N and cos 912,H where
-— —
rig = lrla - r2a| (98)
‘ - — T e —
cos 912,@ T Tla " Toa / ‘rla! Irza‘ (99)

and'?ia is the distance vector from nucleus o to electron 1i.
The first two operators give a measﬁre of the expected distance
between any two electrons and the latter two give a measure of
the angular correlation of two electrous.

The expectation value of a two-electron operator, G(1,2),

is found to be

. 2 2 ..
EG(ul,uJ) + X X c i Coi IG(ul,DJ)‘ (100)

G =X ¢
poi ©J

. C
g HtoH p<v ij
where the quantities EG and IG can be thought of as being
defined by Eqs. 36 and 37 if the following two changes are
made: the one electron integrals, (xk|h|A4), are dropped from

Eq. 36 and the two electron integrals in those equations are

taken to be defined by

[k1, £lu,m v,n] = 2/NQV-1) [T} fdry ¥, L (D (D)

G(L, 29, (D, (2 (101)
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with N being the total number of electrons., The factor
involying N is used in order to give values for <G> that
represent a single pair interaction within the N-~electron
systen. |

One can decompose <G> by

<G> = <G(PNO)> + AG, (102)

which is analogous to Eq. 74, where <G(PNO)> arises from the

principal natural orbitals and AG is the correlation correction

due to the secondary NO's. These quantities are given by

<G(PNO)> =< EG(uo,pO) + = IG(uO,DO) (103)
B ' p<v
AG = ZAEG(u) + = AIG(u,D) (104)
M p<v

where AE,(p) and AI.(p,v) can be defined by subscripting G
onto each E and I in Eqs. 76 and 77.

These properties are exhibited in Table 13 by means of
geminal matrices which are analogous to those presented in
Table 6. Listed are the triangular matrices of intrageminal
and intergeminal contributions to the PNO property, <G(PNQ)>,
and those to the correlation correction, AG, for.each of the
four two-electron operators. The diagonal elements of the
two matlrices for each property are EG(pO,pO) and AEG(p),
the corrcesponding off-diagonal elements are IG(uO,UO) and
AIG(u,U). The sum of the PNO and correlation matrix elements

gives the total expectation value, <G>.
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The lone pair and triplet geminal broperties are seen
to be the least affected by the inclusion of correlation.
The K shell description appears to be changed mostly by
angular effects as measured by <cos 912,N>' The largest
correlation effects are seen in the bonding geminal where
both the interelectronic distance and angular dependence
are greatly inflﬁenced by the secondary NO's.

The R dependence of the two-electron properties is
given in Table 14 and plotted in Graph 10. Since the SP
wave function dissociates into the neutral species, N and H,
one of the NH electrons will position itself about thé
hydrogen atom while all others will remain associated with

the nitrogen atom. Thus, as R increases, the.pair property,

2 -1
rig (fy1p )
interactions involving the "H atom electron'. These inter-

, Will increase (decrease) for each of the pair

actions are averaged with all other pair interactions in the

molccule hy computing the expectation value and therefore

one secs a very strong R-dependence in the quantities rlz2
-1

12 -

The angular functions have values which are very

and r

sensitive to the distance between the reference origin (the
N or H nuclear center) and the centroid of the average
pair. The centroid of the average pair is given by <ra>
of Table 12 when measured with respect to the a nucleus,

As <ra> increases, © decreases and thus <cos © >

12,a 12,a

increases. From Table 12 and Graph 6, <TH? is seen to
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incfeése much more strongly than <rﬁ> as R increases and
thus the strong R dependence of <cos elZ,H? can be under-
stood. The PNO value for <cos 912,N> increases slightly
with increasing R as expected, but so slowly thatbthe
decrease in the correlation contribution (increase in magni-
tude) eventually dominates and gives the expectation value

the R~dependence seen in Table 14.
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SUMMARY

A general formulation of the separated pair approximation
has been presented and used to calculate a wave function for
the 32— ground state of the imidogen molecule. Although the
energy obtained with this wave function is better than any
previously calculated result, the amount of correlation energy
recovered has been found to be severely limited due tb the
constraint imposed by the strong orthogonality conditions
and the omission of intergeminal correlations. Nevertheless,
an understanding of the correlation problem in NH is
achieved and the limitations of the separated pair method
are documented. From the experience gained here, it must be
concluded that a more general scheme for handling electron

correlation must be employed if more than two outer-shell

electrons are involved.
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APPENDIX: GRAPHS, TABLES, NATURAL

ORBITAL CONTOUR MAPS
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TABLE
N ATOM
AC  NLM
1 1660
2 2¢€¢
3 216
4 211
5 200
6 200
7 210
8 211
9 210
1¢ 211
11 36¢
12 31¢
13 311
14 320
15 321
16 322
H ATOM
AC  NLM
17 100
18 2CGC
19 210
2C 211

l.

NH1R=

ZETA

6.23887
7.00044
T7.52337
7.08395
1.15207
2.04880
1.12714
1.48111
2.59182
2097545
2050403
1.63311
1.98409
2.18191
2.28853
256072

ZETA

141948

1.58862
1.81543
1.80215

1.8C00

<rN>
024
0.36
0.33
0e35
2.17
1.22
2.22
1.69
0.96
0.84
1440
2.14
1.76
1.60
1.53
1.37

<xr._.>

1.06
1.57
1.38
1.39

ATOMIC ORBITAL BASIS SETS

NHy R = 1.90C0

LETA

6.23584
6.99704
Te51972
7.08051
1.14252
2.03180
1.11779
1.46882
2.57032
2.95077

2.48326

1.61957
1.96764
2.16381
2026955

253948

ZETA

1.34660
1.50706
1.72223
1.70962

<r.>

Ce.24
C.36
C.33
035
2.19
1.23
2.24
1.70
0.97

. 0.85

1.41
2.16
1.78
l.62
1.54
1.38

<y__>

1.11
l.66
1.45
1.46

NH, R

ZETA

6.23430
6.99531
7.51786
T.07876
1.141C0
2.029C9
1.11630
1.46686
2.56689
2.94684
247995
1.61741
1.9650C1
216093
226653
2.53609

ZETA

1.32856
1.48687
1.65916
1.685672

1.13
1.68
1.47
1.48

NHy R = 1.9614

ZETA

6.23302
6.99388
7.51632
7.07731
1.13781
2.02343
1.11318
1.46277
2.55973
2.93862
2.47303
1.61290
1.95953
2.15490
2.26020

2.52902

. ZETA

1.30295
1.45820
1.66640
1.65420

<rN>
0.24
0.36
.33
G35
2.2C
1,24
2.25
1.71
0,98
0.85
1.42
2017
1.79

l.62.

1.55
1.38

<xr__>

1.15
l.71
1.5C
1.51

LL



TABLE 1. (CCNT.)

N ATCM
AGC NLM
1 1<C9D
2 2Ca
3 21¢
4 211
5 2€0
6 2C0
7 21
8 211
9 210
1¢ 211
11 3¢
12 310
13 311
14 32¢
15 321
16 322
H ATCM
AC NLM
17 1400
18 20¢
19 21¢
20 211

NHy R = 2.0000

ZETA

6.23062
6.99118
751343
7.07458
1.13570
2.01968
1.11112
1.46006
255499
293317
2.46845
1.66990
1.95590
2.15090
2025601
252433

ZETA

1.27847
1.43081
1.63509
1.62312

l.17
1.75
153
1.54

NHy R = 2.0500

ZETA

6.23046
6.9910¢C
T.51323
T.07440
1.13119
2.01166
1.1C671
1.45426
254484
292152
2.45864
1.6C351
1.94813
2414236
224705
2.51430

ZETA

1.24806
1.39677
1.5962C
1.58452

<rN>
C.24
0.36
0.33
0.35
2.21
1.24
2.26
1.72
0.98
C.86
1.42
2.18
1.80
1.63
1.56
1.39

<r.>

1.20
1.79
1.57
1.58

NH, R

ZETA

€.22793
6.98816
7T.51018
T7.07153
1.12874
2.0C730
le10431
1.45111

2.53932

291519
2.45331
1.60003
1.94391
2.13772

224218

2.50885

ZETA

1.21692
1.3€193
1.55638
1.54499

1.23
1.84
1.61
le62

NITROGEN ATCM

ZETA

5.98635

T.20686

756232
7156232
0.95092
2.04691
1.01464
1.01464
1.93575
1.93575
2.68240
2.58502
258502
2.50539
2.50539
2.50539

<r.>

De25
0.35
Ge33
0.33
263
1.22
2.46
2446
1.29
1.29
1.3C
1.35
1.35
1.4C
1l.4C
1.40

8L



TABLE

NH,

>
c

VO~NOUV D WN R

2. D MATRICES AND OCCUPATION COEFFICIENTS FOR NH

R =

K SHELL
1 SIGMA 1

l.11481
-0.13851
-0.00003

C.C

0.01082

0.07319
~0.00553

C.0
~0.00027

0.0
-0.04843

0.01177

0.0

0.00453

C.0

0.0
~0.00831
-0.01345
-0.,01121
QG

0.99982

1.8000 BOHRS

K SHELL
2 SIGMA 2

-2.30521
2.81536
0.0GC69
C.0 '

0.47548

-1.09783
-0.04861
0.0
-0.00435
0.0
0.03560
-0.08651
0.0
-0.05427
C.0
C.0
0.06768
0.17028
0.06615
0.0

-0.01119

K SHELL

©
L]
ot

Ui
o}
o
W

8166

6117

8797

5737

COCOCOOOTCOOHMOOOMOODO W
& © © o 8 6 0 0 06 0 0 8 0 % 0 0 8 s O

QOOCOO0OO0ONOOVODLPODOOLPOOO

0.05523

-0.00871

K SHELL

4 SIGMA 3

-0.02122
0.02476
1.27782
0.0

-0.04558

'=0.13762

O0.C
~0.83431
8.0
-0.01277
242947
0.0
-0.04650
0.0
0.C
-0.10508
Ce26643
0.16464
0.0

-0.00860

LONE PAIR
1 SIGMA 1

-0+ 24635
~C.02527
-0.00771
C.C
0.16290
1.03063
-C.14037
C.C
-0.11081
0.0
-0.09353
C.04648
0.C
C.02G90
CeO
C.0
0.02646
-0e11431
-0.0117¢C
0.0

099926

LONE PAIR

2 SIGMA 2

0.20111
0.03811
-0.01876
0.0
1.51718
-1.77507
~-0.23655
C.0
0.31966
0.0
C.17590
-D.11851
0.0
0.0

~0.26391

0.45492
021182
OG-

. -0.03187

LONE PAIR
3 DELTA )

C.0
0.0
C.0C
0.0
0.0
0.0’ .
€.0
C.0 .
O.o

0000

ODOOWOOOOO
© o 0 0 0 0 0 0 0

COOO00OOOOO

-0.01243

6L



TABLE

NH

o
S0 DN D VN ]

N b pod i pod ot ok ek pd et
CIrO O~NODN D WN O

@]
O

2. ‘CGNT&)

R =

LONE PAIR
4 PYI 1

5744

OUODOFOOPOOOOO00

e & @& & o 0 0 & ¢ o & & o

0.0
-0.95124

-0.0CBT2

1.8000 BOHRS

LONE PAIR
5 SIGMA 3

3.17478
-0.01417
0.0
=-0.94972
-11.00612
0.07280
0.0
-0.00896
0.0
11.48753
0.30002
0.0
0.18726
0.0
0.0
-0.30593
-0.32325
-0.05192
0.0

-0000114

BONDING
1 SIGMA 1

~0.00456
0.01118
J.0
-0,09435
0.07960
0.02968
0.C
0.42991
0.0
-0e00468
C.30141
C.C .
05220

(]

0.
O.
Ce0

Ce45451
-C.00661

0.02424
Ca.0

0.99540

BONDING
2 SIGMA 2

0.06392
0.03066
0.02684
- Qa0
-0.17010
-0.72858
0.12461
C.C
-0.85624
0.0
-0.00842
-0.42480
0.0
-0.11521
0.0
C.0
1.26278
0.19163
0.11378
DeC

BONDING
3 PI 1

«L3523
0.C
~(+35858

BOND ING
4 SIGMA 3

0.0C624
0.00125
~0.01326
0.0
0.48616
268907
Ce0
-0.94400
C.0
0.0C328
-1.28640
G.C
—0.16779
0.0
0.0
0.31227
Gel2202
Q.0

-0.02865

BONDING

5 SIGMA 4

0.04603
-0.05647
02917
Ce.0
C.70175
0.04300
0.49728
CeG
-0.23369
C.0
-0.08616
0.39236
8.0
1.25953
C.0
0.0
~1.47015
C.18622
Ce11517
C.C

-0.01016

08



TABLE

NHy

>
Q

[
OO~ D WN -

N b ot b ot b ol ok ot ot
TN DWN

Q
]

2. (CONT.)

R = 1.8C0C BOHRS
BONDING BONDING
6 SIGMA 5 7 SIGMA 6
-0.11231 0.02199
C.18304 0.01818
-0.12313 ~-2.02013

0.0 0.0
-2.29872 0.65089
-1.13699 -0.1C361
~4412430 ~7.86602

C.0 0.0

0.78104 0e24962

0.0 0.0

1.55509 0.21530

2.26518 848796

0.0 0.0

0.0 0.0

0.0 0.0
-1.,88655 -0.52031

4,18992 -0.65129
-0.0881¢ ~0.07760

.0 0.0
-0.00811 ~-0.00574

BONDING
8 SIGMA 7

0.16423
~Ge8650C0
0.12739
0.0
~-2.7TT7691
2051158
2022671
G.0
-D.85232
0eD
~5.16117
-5.57C10
0.0
~1.49115
0.0
0.0
0.98412
5.,41730
293385
0.0

-0.00368

TRIPLET
1 PI 1

o
©
o2}
o

2643

6052

5553

N
-
N
0

OOOOOOOOOOOHOOOOOOO
R EEEEEEEEEEE
OOOOOONOONOOOOOOOOO

0.01876

0.99930

TRIPLET

2 PI 2

C.C

GQG

0.C

0.14383

CeC

C.0

0.C

211977

Q.0

-1.67C94

0.0

C.0

-0.79042

C.0

-0.15834

Cel)

0.C

c.0

0.C

" De14874
=-0.L3741

TRIPLET
3 PI 3

C.0
0.0
0.0
-0.35575
G.0
C.0
C.0
14.85654
0.0
~1.7C984
C.0
C.0
-13.9G383
0.0
-0.32112
0.0

1316

-0.0C175

18
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TABLE

NH,

>
(e ]

OO~ UL W=

2. (CONT.)

R = 1.9000 BOHRS
LONE PAIR LCNE PAIR

4 PI 1 5 SIGMA 3

0.0 ~1.45778

0.0 3.13201

C.0 -0.00797

0,06331 0.0

C.0 -1.01076

0.0 -10.88193

0.0 G. 03049

6.83517 0.0

0.0 -0.01818
-1.39356 0.0

.0 11.33929

0. 0626122
~543G39 0.0

C.0 0.15082

1.C6673 0.0

0.0 0.0

0.0 -0.30870

0.0 -0.16791

0.0 ~0.05242
-0.93933 0.0
-0.00894 -0.00C116

BONDING
1 SiGgMA 1

~-0.03173
-0.00819
0.01100
0.0
-0.12053
0.09613
0.03052
0.0
0.43826
0.0
-0.025011
0.27096
0.0
0.04616
0.0
0.0
0.46603
0.02267
0.03291
0.0

099442

BONDING
2 SIGMA 2

G.06988
0.03056
0.00810
0.0
-0.13135
-0.69513
0.10662
0.0
-0.79520
0.0
0.08098
-0.33412
0.0
~0.06210
0.0
0.0
1.2C978
.0.05269
0.04459
0.0

-0.09267

BONDING
3 PI 1

6192

~-5.02788

BONDING
4 SIGMA 3

0.00869
0.00979
~0.01280
0.0
0.63978
~0.14605
275446
0.0
~0.95418
C.0
0.05671
=1.19299
0.0
~-0.11721
0.0
C.0
~1.00486
0.1C233

0.02316 .

0.0

~0.02740

BONDING
5 SIGMA 4

0.04385

-0.05035
0.03884
0.0
0.76431
0.03853
0.54568
G.0

-0+26620
0.0

-0.10780

0.38372

0.0
1.25269
0.0
0.0

-1.47090
0.15497
0.06560
0.0

€8



TABLE

NH,

>
o

DO~V W

ot
p

et b et b
~NoOoWwmpWN

N s
DO ®

(w]
(9]

2. (CONT.)

R = 1.9G00 BOHRS
BOND ING BONDING
6 SIGMA 5 7 SIGMA 6
-0.11444 0.01530
0.18676 0.01372
—0.12481 -0.01518

C.0 0.0
-2.48846 0.49395
-1.13990 -0.11082
-4:42627 -795990

0:C 0.0

C.83417 024371

0.0 0.0

1.65865 0.13091

2:47752 8439052

0.0 0.0
-0:27013 016651

0.0 0.0

0.0 0.0
-1.87874 ~0.54554

4431435 -0,29141
-0.02788 ~0.05100

C.0 0.0
-0.00803 =0.,00600

BONDING
8 SIGMA 7

0.17761
-0.84477
0,07740
0.0
-2,94773
2.61537
1.97148
0.0
-0.62837
0.0
-4 485796
~5.28820
0.0
-1.40439
0.0
0.0
0.97659
5.09748
2.93583
0.0

-0.00370

TRIPLET
1 PI1

oo
N
H
-

[wr
Ui
N
o ]

6012

4716

OCDO(DC>S(DNJOCDN¢DC)O(DC)O(DC)O
N
&
N

® 0 & & 2 9 06 & 0 4 0 0 B ¢ 0 0 0 ¢ O o

2395

0 CDC’O(DC)O(3C>0¢DC)OO‘C)C>O<DCDC)O

e 99926

TRIPLET
2 PI 2

HFOO0O0OOONOOROMOOOHODOO
W
0
O
(o

[
Y
o3
W

7070

9578
4991

O(Dﬂ)C)OtDCDC)O<DrdC)h>ClQ<DC>C>O¢D

3052

-0.03831

TRIPLET
3 PI 3

0.0
0.0
0.0
-0.34632
C.0
0.0
0.0
14.89249
G.0
‘1072999
C.0
0.0
-13.89723
0.0
~0.29049
0.0
0.0
0.0
C.0
0.45529

-0.0C179

78



TABLE

NHy

AD

VO~V PHWNM

1C

12
13
14
15
16
17
18
19
20

gc

2. (CONT.)
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-0.01259
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TABLE

NH

>
(w’

VONIITRN D WNK

2. (CONT.)

R =

LONE PAIR
4 PI 1

0.06953

P
H
0
wm

2313

1022

4161

OOOHOU\OOHOO‘OOO

*® & & o PO & 0 0 9 V& v &

DO0ODO0OOVMODOPHPOVOLDOO

~0.92133

—-0.00922

2.0500 BOHRS

LONE PAIR

5 SIGMA 3

-1.44903
3.07686
0.00039
0.0

-1015628

-10.71626

-0.07351
0.0

-0.02260
0.0

11.13173
0.20259
0.0
0.08599
C.0
0.0

-0.28495
0.09497

-0.,00520
0.0

“0000119

BONDING
1 SIGMA 1

-0.02988
-0.01215
0.,00971
0.0
-0016629
0.11456
0.01729
C.0
C.45396
0.0
-C.03C69
023991
0.0
0.03898
0.C
0.0
0.48345
N.06461
0.050G3
0.0

0.99279

BONDING
2 SIGMA 2

0.07614
0.03167
-0.6G1134
0.0
-0.05790
-0.67364
0.09828
0.0
=-0.73476
0.0
0.19316
~0.21903
0.0
0.00668
0.0
0.0
1.13807
-0.11870
-0.05228
0.0

-0.10928

BONDING
3 P11

OOoOO0DLOHOODODNODOODOO0O0OOG
N
o
W
W

4084

5956

8945

77C6

OOODOONOOOO-&‘OOOOOOO

o & & & & & & & » & & O 0 0 O & 0o o

-0.86982

-C.02778

BOND ING
4 SIGMA 3

0.01087
0.01934
-0.0C648
0.0
0.88925
-0.14762
2.92048
0.0
~0.99745
0.0
0.07875
-1.13703
0.0
‘0005873
g.0
C.0
-1.07432
-0.15835
-0.12256
0.0

-0.02527

BONDING
5 SIGMA 4

0.04119
~0.04449
0.05267
0.0
. 0.85627
0.04083
0.63619
0.0
-0.31605
0.0
‘0016331
C.34057
0.0
1.23715
.0
0.0
-1.46670
0.12377
-C.00159
0.0

~-0.01126

g6
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2. (COCONT.)

= 2.0500 BOHRS

BONDING
6 SIGMA 5

-0.11767
019577
-0.12639
0.0
-2+76881
~-1.16184
-4.90782
0.0
C.91437
G.0
1.84613
2.84429
0.0
~0:27541
Gg.C
C.0
~1.85494
4.46360
0.06768
0.0

-0.00786

BONDING

7 SIGMA 6

0.00684
0.00874
-0.01154
0.0
0.20132
-0.11704
~8.23678
0.0
0.26927
0.0
0.06225
8.36491
0.0
0.06124
0.0
0.0
-0.55908
0.21834
0.01159
0.0

-0,00644%

BONDING

8 SIGMA 7

019375
-0.80711
0.01223
0.0
-3.12398
2.68296
1.65975
0.0
~0.34674
o.o
~4436820
~-4,87329
0.0
-1.26800
0.0
0.0
0.94878
4.61109
2.91037
0.0

-0.00368

TRIPLET TRIPLET

OOOOOOOOOOHONOOOOOOO

-0.0394C

TRIPLET
3 PI 3

C.0

0.0

0.0
=0e33416

0.0

0.0

0.0
14.99152

0.0
-1.76793

0.0

0.0

=-13.93117

-0.00184

96



TABLE

NHy

»
o
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OO D W N

Pt o b ok ok ot b ot
bodooumpdpbwnNn

N
o
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O

2. (CONT.)

R =

K SHELL
1 SIGMA 1

1.11850
-0.14871
C.00085
G.0
-0.00591
0:,10384
0.01019
C.0
-0.00425
0.0
-0.09541
-0.02656
0.0
-0.00580
a0
0.0
0.00734
0.01101
G.01280
o.o

0.99982

2.1G00 BOHRS

K SHELL
2 SIGMA 2

-2.28801
2.79201
-0.00579
0.0
0.61424
-1.03618
0.01757
0.0
0.01191
0.0
0.08120
0.00608
«0
0959

0
0
0

QOO0

0.00955
-0.06024
-0.03088

0.0

-0.01134

K SHELL
3 PI 1

W
W
-~
o

50439

COO0O0O00OUOHOOOO=OOOROOO

2586

o
N
H
[

5266

QOO0 COPOO0OVAOVOOOHOOCO

® 6 ¢ 0 & 0 0 0 P 0 O & & 0 0 O b O

()
¥
W
@
2]

-0.00875

K SHELL
4 SIGMA 3

-0o01419
0.02117
1.25113
0.0

-0.09083

-0.09612

-2.27942
0.0

-0.748B16
0.0
0.06536
255741
0.0

-0.02681
0.0
0.0
0.31668
0.05937
.0

-0.0C865

LONE PAIR
1 SIGMA 1

-0.02590
~0.G0371
0.C
N«10824
1.C5207
-0.10984%
C.C
-0.12218
0.C
-0.17494
-0.06618
0.0
-0.01505
0.0
0.0
0.07195
-0.01602
6.03592
0.C

0.99922

LONE PAIR
2 SIGMA 2

0.21140
0.05G39
-0.02C00
0.0
1.96447
~1.76063
-0.08703
0.0
0.32470
0.0
0.34622
0.05458
0.0
0.01681
0.0
0.0
-0.39217
-0.08897
-0.09395
0.0

=0.03263

LONE PAIR

3 DELTA 1.

0000

O 0 & 0 0 0 O 0 & 0 O 0 0 0 O 0 o

OO00OVOHOOHDNOOODODODODODOOOOO
s NoReloNoNoReNoRoRoNoNoNeNoRoNoleNoReRol

~-0.01262

L6



TABLE

NH,

>
O

No l IENR SN, B IR\ O

2. (CONT.)

R =

LONE PAIR
4 PI 1

-
-
W
O

[SVRE
N W\
o~
O o~

4132

3324

OOQOﬁQmOOHOO‘DOOOOOO
6 © 6°0 0 & 9 & O 6 F 6 0 6 0 2 b @

QOO0 QOOVOOPDVOCOOOCO

-0.91547

~-0.00932

2.1000 BOHRS

LONE PAIR
5 SIGMA 3

-1.44757
3.06427
0.00262
0.0

-1.22187

-1067623

-0.12317
0.0
0.0

11.07890
C.18686
0.0
0.06221
0.0
C.0

~0.27096
0.19054
0.02276
0.0

-0.00120

BONDING
1 SIGMA 1

-0.02930

-0.01328
0.00881
0.0
0.11967
0.01049
0.0
0.46026
0.C

- =-0.03113

0.23213
C.C
0.03727
c.0
0.0
0.48969
0.07722
0.05666
0.0

0.99221

BONDING
2 SIGMA 2

0.07748
0.03265
~0.01573
0.0
~0.03085
~0.67162
0.09923
0.0
-0.72096
0.0
0.22483
-0.18572
0.0
0.02721
0.0
O.o
1.11610
-0.16733
~0.,08293
0.0

-0.11458

BONDING
3 PI 1

N
N
oH
o

W
o}
\0
N

6792

C446

8118

OOOOOOWOOOO-“OOQOOOO
I EEEEEEEEEEEREE

COOOVWOMOONGOODOOOOOG

-0.87270

-0.C2771

BOND ING BONDING
4 SIGMA 3 S5 SIGMA 4
C.01132 6.04044
0.02184 -0.04322
-0.00288 0.05730
0.0 G.0
C.9804] 0.88866
2099397 0.67253
0.0 6.0
0.0 C.0 -
0.07088 -0.18818
-1.13787 0.31850
0.0 0.0
-0.04244 1.23105
0.0 .0
0.0 0.0
-1.09873 -1.46507
-0.23546 0.11565
-0.17250 -0.02324
0.0 0.0
~-0.02452 -0.01145
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TABLE 2. (CCNT.)

NHy R = 2.1000 BOHRS
BOND ING BONDING BONDING TRIPLET TRIPLET TRIPLET
AQO 6 SIGMA 5 7 SIGMA 6 8 SIGMA 7 2 P12 3 PI 3
1 -0.11899 0.00417 0.19806 0.0 0.0
2 0.20018 0.00785 =079464 GeC Q.0
3 ~0.12675 -0.01079 -0.00721 0.0 0.0
4 0.0 0.0 0.0 0.13491 ~0.33095
5 -2.86439 0.08650 ~3.16746 CeC 0.0
6 ~1.17558 -0.11988 2068951 - 0eC 0.0
7 ~-5.07857 -8.36679 1.57191 0.C 0.0
8 0i0 0.0 0.0 217446 15.03946
9 0.94197 0.28607 ~0.26458 C.C 0.
10 G.0 0.0 0.0 l.67441 -1.78239
11 1.92049 0.05564 -4.19995 C.C 0.0
12 2.,98157 8.38839 ~4.73655 0.C 0.0
13 G.0 0.0 0.0 0.81684 -13.95638
14 -0.27556 0.02750 ~1.22001 0.0 0.0
15 0.0 0.0 0.0 0.13896 -0.23831
16 0.0 0.0 0.0 0.0 0.0
17 -1.84225 -0.55707 0.93882 0.0 0.0
18 4.50409 D.38474 4e 44547 0.C 0.0
19 0.1C162 0.03955 2.89623 0.0 0.0
2C Cc.0 0.0 0.0 0.1037¢C 0.34667
ac -0.0G780 -0.00661 ~0.00367 -0.03966 -0.00186

66



TABLE 3.

AOC

O NN

11
12
14

oc

K
15§51

1.20416
-0.20030
0.C
C.00164
-0.,12799
G.0

7832

QOO0

(=N oNoNeo)

0.99979

~-1.47059
0.0
0.02757
C.0

-0.00802

K
28 2

-2.74018
3.31292
0.0

-1.95653

~0.01156

L
4 S 2

-1. 69779
3.62446
0.0
1-15624

-14.61596
0.0
0.0

12.97813
0.0
0.0

-0.00171

100

6320

O=OO0 W
QOO < R

0.0
~0.21587
4.,14811
0.0
-3.48826
C.0

-0.00980

o~

5075

QOO0 W
OCONOO

[ ]
L J
-*
[ ]
L]

"00339‘97

" 13622597
0-0 ’

~-12.69782
000

-0.00169

L
1S1

-0.21523
-0602030
0.0
0.09135
1.08466
0.0
0.0
-0.10646
0.0
0.0

0.99946

L
6 S 3

-0.55715
1.61998
0.0

"0094765

-9.48276
0.0
0.0
9,.82230
0.0
0.0

-0.00158

D MATRIX AND OCCUPATION COEFFICIENTS FOR NITROGEN
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TABLE

SEPARATED PAIR WAVE

1.8000
1.90C0
l.923¢C
1.9614
2.00090
2.0500
2.1000

PRINCIPAL NATURAL ORBITAL WAVE

1.80G0
1.900C
1.9230
1.9614
2.00C0
2.0500
2.10GC

ENERGY DECCMPDSITION OF NH AS A FUNCTICON OF INTERNUCLEAR DISTANCE

VNH

3.888¢9
3.6842
3.6401
3.5689
3.5000
3.4146
3.3333

3.8889
3.6842
3.6401
3.5689
3.5000
3.4146
3.3333

CORRELATION ENERGY

1.8000
1.90GC0
1.9230
1.9614
20000
2.05CC
2.100C

VN

Vy

Vi2

FUNCTION (ENERGIES IN HARTREES)

~132.6091
-132.2051
-132.1306
-131.8668
-131.6911
~131.5561

-132.6166
~132.2102
~-132.1354
-132.0017
-131.8698
~-131.6929
=-131.5571

0.2041
0.1401
0.1295
0.1067
0.0808
0.05C1
0.0258

=4,9716
-4.6901
-4.6085
~4+5294
-443341

FUNCTION

-4,9702
-4.,7392
~4.5265
-4.3305

(ENERGIES IN EV)

-0.0397
-0.0593
-0.0716
-0.0887

23.3267
23.0895
23.0428
22.9643
22.8916
22.7824
22.7027

55.3450
55.1409
55.1C5C
55,0396
54,9717
54.8934
54,8277

~-55.03178
-55.03281
-55.03352
-55.03293

' =55,03C47

-55.02643

(ENERGIES IN HARTREES)

23.4441
23.2096
23.1635
23.0861
23.0143
22.9064
22.8280

~3.1941
-3.2665
~3.2842
~-3.3381
~3.3726
-3.4083

5502517
55.0836
55,0468
54,9798
54.9104
54.8300C
54.7624

l.4484
1.5591
1.5828
1.6250
1.669C
1.7251
1.7765

“54096207
-54,97200
-54,97269
-54.,97281
-54.,97166
~54,96850
-54,96381

-1.5814
‘1.6266
-~1.6519
~-1.6862
~1.7039

dE/ OR

-0.0574
-0.0031
G.0306
0.0669
C.0946

-0.1831
-0.0587
-C.0036
C.03C6
0.0676
C.0959

10T



TABLE 5. COMPARISON WITH PREVIOUS INVESTIGATIONS

E(HARTREE)

-53.8215

~54.54G9

-54,55581

-54,68909

-54.,7827

STHE ABBREVI
LCAO~MO~SCF

Cl
v
GTF
STAG

R{BOHR) YEAR REFERENCE DESCRIPTIUNa
1.908 1956 HIGUCHI (59) APPROXIMATE LCAC-MO~-SCF
HARTREE-FOCK AO BASIS SET
2.0 1963 REEVES (64) GENERAL CI (63 CONFIGURATIONS)
EXTENDED GTF BASIS SET
2.0 1965 REEVES AND GENERAL CI (56 CONFIGURATIONS)
FLETCHER (65) EXTENDED GTF BASIS SET

1.9614 1965 LOUNSBURY (67) ONE-CENTER LCAO-MO-SCF
MINIMAL STAO BASIS SET

1.9735 1963 BISHOP AND ONE~CENTER VB (1 CONFIGURATION)
HOYLAND (66) STAD BASIS SET WITH NON-INTEGRAL
QUANTUM NUMBERS

1.9614% 1958 BOYD (61) LCAO-MO-SCF
MINIMAL STAO BASIS SET

ATIONS USED ARE AS FOLLOWS.ee

LINEAR COMBINATION OF ATOMIC ORBITALS - MOLECULAR DORBITAL - SELF
CONSISTENT FIELD METHOD

CONFIGURATION INTERACTION

VALENCE BOND METHOD

GAUSSIAN-TYPE FUNCTIONS

SLATER-TYPE ATOMIC CORBITALS

¢0t



TABLE 5.
E{HARTREE)
~54.785
-54.8C5
~54.810
-54.90638

~54.97281

-54.97838

-55.03352

(CCNT.)

R{BOHR)

1.9614

1.9614

1.9614

1.9

1.9614%

1.923

1.9614

YEAR

1958

1958

1958

1965

1968

1967

1968

REFERENCE

KRAUSS (60)

HURLEY (63)

KRAUSS AND

WEHNER (62)

JOSHI (68)

THIS WORK

CADE AND
HUO (1)

THIS WORK

DESCRIPTION

LCAQ-MO-SCF
MINIMAL STAO BASIS SET

VB-CI (5 CONFIGURATIONS)
MINIMAL STAC BASIS SET

LCAC-MO-SCF-CI (9 CCNFIGURATIONS)
MINIMAL STAO BASIS SET

ONE-CENTER LCAO-MO-SCF
EXTENDED STAO BASIS SET

PRINCIPAL NATURAL ORBITAL -
SINGLE DETERMINANT OF THE
SEPARATED PAIR APPROXIMATION
EXTENDED STAO BASIS SET

LCAQO-MO-SCF
EXTENDED STAO BASIS SET

SEPARATED PAIR - NATURAL ORBITAL
EXTENDED STAO BASIS SET

€01



104

GEMINAL ENERGY MATRICES

TABLE 6.
NHy R = 1.8000
PNO MATRIX
K
K =45.835451
L 3.784619
B 3.114357
T 3.689466

CCRR MATRIX

-~ o~ R

NH,

PNO

K
L
B
T

R = 1.

K
~0.024126
-0.001687

0.000616
0.000448

93000

MATRIX

K
=45, 7717345
3.752242
3.065353
3.664772

CORR MATRIX

- 0™~ X

K
~0.024156
-0.001726

0.001069
0.000475

L

-10.804800
2.097825
2.387884

L

~0.002214
-0.000607
~0.000629

L

-10.715599
2.061451
22365469

L

-0.002171
~0.000620
-0.000645

B

-9.554925
2.229892

-0.024758
-0.000715

-9.385478
2.193017

~0.026629
-0.000807

~9.959823

-0.004454

-9.88C096

-0.004566



TABLE 6. [CONT:)
NHy R = 1.9230
PNO MATRIX
K
K -45.764578
L 3.746647
B 3.055536
T 3.659789

CORR MATRIX

K
K =-0.024159
L -0.001733
B 0.001147
T 0.000483
NHy R = 1.9614
PNO MATRIX
K
K -45.743882
L 3.735399
B 3.039359
T 3.653257

CORR MATRIX

K
L
B
T

K
-0.024169
-0.001739

0.001288
0.0C0486

105

L

-10.698150
2.054294
2.361335

L
~0.002162

-0.000639
-0.000646

L

-10.665887
2.041575
24354097

L

-0.002155
-0,000664%
-0.000650

~9.349793
2.185497

-0.026969
-0.000848

-9.290578
2.173268

-0.027567
~0.000917

~9.863417

-0.004591

- =-9.838302

-0.004617



TABLE 6. (CONT.)
NHy R = 2.0000
PNO MATRIX
K
K -45,723962
L 3.726333
B 3.024169
T 3.646089

NH

CORR MATRIX

K
L
B
T

PNO

K
L
B
T

= 2e

K
-0.024177
-0.001740

0.001427
0.000497

0500

MATRIX

: K

-45,699167
3.711144
3.003496
3.633048

CORR MATRIX

-~ X

K
-0.024195
-0.001739

0.001594
0.000517

106

L

-10.637871
2.030267
2.347786

L

-0.002151
-0.000694
~0.000648

L

-10.595374
2.013853
24336684

L

-0.002146
-0.000741
-0.000643

-9.233193
2.161516

-0.028134
~-0.000994

-9.157843
2144490

~0.028792
~-0.001105

-9.812799

-0.004654

-9.773467



TABLE 6. (CONT.)

NH, R = 2.1000
PNO MATRIX
K
K —45.675284
L 3.700843
B 2.987248
T 3.626511

CCRR MATRIX

K
-0.024208
-0.001736

0.001682
0.000523

-~ X

NITROGEN ATOM
PNO MATRIX

K
K -44.701701
L 3.708872
B 1.868965
T 3.737930

CURR MATRIX

K
K =-0.031333
Lt =-0.000679
B -0.000022
T =-0.000045

107

L

-10.561372
2.000687
20329884

L

-0.002146
-0.000825
-0.000640

L

-9.915854
1.197551
2.395102

L

-0.004676
-0.000060
-0.000119

B T
-9.091361
2.131402 -9.745705
B T
-0.029254
~0.001265 -0.004751
B T
~44827409
1.194688 -9.057473
B T
0.0
0.0 0.0



TABLE 7. SECONDARY NATURAL ORBITAL CORRELATION ENERGY CONTRIBUTIONS

NATURAL ORBITAL

K SHELL 2
K SHELL 3
K SHELL 4

LONE PAIR
LONE PAIR
LONE PAIR
LONE PAIR

BONDING
BONDING
BONDING
BONDING
BONDING
BONDING
BONDING

TRIPLET
TRIPLET

WN o~NoViHWN

TOTAL GAIN

SIGMA 2
PI 1
SIGMA 3

2 SIGMA
3 DELTA
4 Pl

5 SIGMA

SIGMA
Pl

SIGMA
SIGMA
SIGMA
SIGMA
SIGMA

~NOVMPWN

PI 2
PI 3

U= = N

NHy R = 1.9614 BOHRS

AE(ui,u0)

-0.00980
-0.00479

-0.00250
-0.00079

=0.00045

-0.00005

-0.01883
-0.00234
-0.00180
-0.00074

-0.00045 -

-0.00017
-0.00017

-0.00409
-0.00002

AE(ui)

-0.00972
-0.00485
-0.00474

0.00010
-0.00076
-0.00005

-0.02383
-0.00099
-0.00045
-0.00079
-0.00026
-0.00009

-0.00461
-0.00001

-0.06311

AX(ui)

-0.00008

-0.00003
-0.00005

-0.00003
-C0.00011
0.0

0.00472

~0.00137
-0.00137

0.00005
-0.00C18
-0.00008
-0.00C01

0.00052
-C.00001

-0.00167

A(ui)

-C.00980
"‘0.00479

-0.00251
~0.00079

~0.00045

-0.01911
-0.00236
-0.00182
-0.00044
-0.00017
-0.00017

-0000409
-0.00002

-0.06478

oc

-0.01128

. -0.00873

-0.00863

-0.03259

~-0.01254
-0.00907
-0.00117

'=0.09961

~-0.02787
~0.02652
-0.01091
-0.00369

-0.00182

80T



TABLE 7.

(CONT.)

NATURAL ORBITAL

K 28
K 3°P
L 20D
L 3°p
L 435S
L 58S
L 65

TOTAL GAIN

D WN e

2
1

AECuisu0)

-0.,011690
-0.00661

-0.00088
~-0.00023
-0.00013
~0.00007
~0.00003

AE(ui)

-0.01154

-0.00660

-0.00083
-0.00014
-0.00008
-0.00002

-0.03585

NITROGEN ATOM

AI(ui)
-0.00006

-0.00002

-0.00005
0.00001
0.00001
0.0

~-0.00092

Alui)d

-0.01160
—0.00662

-0.00088
-0.00023
-0.00013
-0.00007
-0.00002

-0.03677

ocC
-0.01156
-0.00980

-0.01326
-0.00802
-0.00171
~-0.00169

60T



TABLE 8. PAIR CORRELATION ENERGIES FOR EACH GEMINAL OF NH AT R=1,9614 BOHRS

PAIR CORRELATION OF THE K SHELL GEMINAL

NATURAL ORBITAL AE(ui, u0) AE(ui) AL(Hi) Aqui) - oc
K SHELL 2 SIGMA 2 =0.00979  -0.00971 =-C.00008  -0.00979  =-0.01126
K SHELL 3 PI 1  -0.00488  -0.00485 =-0.00003 ~ -0.00488  -0.00873
K SHELL 4 SIGMA 3  -0.00479  -0.00474 =-0.00005  -0.00479  -0.00862
LONE PAIR 2 SIGMA 2 =-0.00005  -0.00005 =0.0 ~0.00005  -0.00124
LONE PAIR 3 DELTA 1 =0.0 -0.0 -0.0 -0.0 -0.00008
LONE PAIR 4 PI 1 =0.0 -0.0 ~0.0 -0.0 ~0.00005
LONE PAIR 5 SIGMA 3 =-0.00021  —-0.00020 =0.0 -0.00626 "~ -0.00175
BONDING 2 SIGMA 2  =-0.00004  =-0.00004 =0.0 -0.00C04  -0.00108
BONDING 3 PI. 1 =0.0 -0.0 ~0.0 -0. -0.00001
BONDING 4 SIGMA 3  =0.00001  -0.00001 =0.0  ~0.00001 - ~0.00045
 BONDING 5 SIGMA 4  =0.0 -0.0 -0.0 -0.0 -0.00006
BONDING 6 SIGMA 5  =0.0 -0.0 -0.0 -0.0 -0.00006
BONDING 7 SIGMA 6  -0.00002  -0.00002 =0.0 -0.00002  -0.00071
BONDING 8 SIGMA 7  =0.0 ~0.0 ~0.0 =040 ~0.00011
TRIPLET 2 PI 2 -0.00008  =-0.00007 =0.0 -0.00C07  -0.00145
TRIPLET 3 PI 3 -0.0 -0.0 ~0.0 ~0.0 -0.00013 .
TOTAL GAIN ~0.02460 ~0.C0025  -0.02484

01T



TABLE 8.

(CCNT.)

NATURAL ORBITAL

K SHELL 2
K SHELL 3
K SHELL 4

LONE PAIR
LONE PAIR
LONE PAIR
LONE PAIR

BONDING
BONDING
BONDING
BONDING
BONDING
BONDING
BONDING

TRIPLET
TRIPLET

TOTAL GAIN

WN ONOVMPWN

SIGMA 2
PI 1
SIGMA 3

2 SIGMA
3 DELTA
4 PI

5 SIGMA

SIGMA
PI

SIGMA
SIGMA
SIGMA
SIGMA
SIGMA

~NoOVMPWEN

PI 2
PI 3

Q) P = N

AE(uigsu0)

-0.00013
-0.00002
-0000002

-0.00242
-0.00077
-0.00043
-0.00005

-0.00072
-0000014
-0,00012
-0000066
-0.0

-0.00007
-0.00001

‘0000033
-0.00003

AEC(ui)

-0.00015
-0.00002
-0.00002

0.00002

-0.00075
-0.00033
-0.00005

-0000070
-0.00007
-0.00002

-0.00059

-0.0

-0.00002

-0.00001

‘0000035
-0.00002

. ~0.00461

AT(ui)

0.00€02
0.0
0.0

-0000245
-0.000G3

-0.00010

0.0

-0.00003
-0.00008
-0.00010

-0.00007

-0.0
-0.00005
-0.0

0.00003
-0.00C01

-0.00305

PAIR CORRELATION OF THE LONE PAIR GEMINAL

Aqui)

-0.00013
-0.00002
-C0.00C02

-0.00243
-0.00C78
-0.00C43
-0.000C05

-0.00GC73
-0.00C15
-0.,00012
-0.00066
-000

-0.00007
-0.00001

’0000032

-0.00C03
-0.00766

oC

~0.00149

-0.00059

fc.00964 .

-0.03158
-0.01224
-0000868

' -0.00110

-0.01578
-0000587

'-0000586

-0.01061
-0.00017

-0.00408

-0000692

-0.00896
-0.00204

ITI



TABLE 8. (CONT:)

NATURAL ORBITAL

K SHELL 2
K SHELL 3
K SHELL 4

LONE PAIR
"LONE PAIR
LONE PAIR
LONE PAIR

BONDING
BONDING
BONDING
BONDING
BONDING
"BONDING
BONDING

TRIPLET
TRIPLEY

TOTAL GAIN

SIGMA

WN o~NupPWNn

SIGMA 2

PI 1

SIGMA 3

2 SIGMA
3 DELTA
4 Pl

5 SIGMA

SIGMA
PI
SIGMA

SIGMA
SIGMA
SIGMA

PI 2
PI 3

NoundWE=N

Q) b et [\

AE(uiyu0)

-0.0
-0.0

-0,00013
-0,00002
-0.00027
-0.00001

-0.01872
-0.00231
-0.00178
-0.00074

- =0.00045

-0.00016
-0.00017

-0.00005
-0.00001

AE(ui)

-OQO
-000

-0.00007
-0.00002
-0.00025
-0.00001

-0.02367
-0.00099
-0.00046
-0.00079
‘0000026
-0000009

-=0.00016

-0.00006
-000

-0.02819

AI(ui)

0.0
G.0
Ce0

040 '
-~0.00001
0.0

0.00468
-0.00134
~0.00134

0.00005
-0.00018
~0.00007
-0.00001

0.00001

~0.0
0.00037

PAIR CORRELATION OF THE BONDING GEMINAL

- Aqui)

‘000
-0.0
-0.00003

-C.00013
-0.,00C26
-0.00C01

-0.00233
-0.00180
~0.00074
-0.00044

-0+00016

'~0.00005

‘000

. =0.02782 .

oc
-0.00019

-0.00010
-0.00075

- =0e00671

-0.00142
~0+00651

-DsQOGBZ'

-<0.09902
~0.02756
~0.02625

-0.,01082 .

~0.00793
~0.00604

- =0.00366

~0.00297

-0.00086

(AN



TABLE 8. (CONT.)

PAIR CORRELATION OF THE TRIPLET GEMINAL

NATURAL ORBITAL

K SHELL 3 PI 1
LONE PAIR 3 DELTA 1
LONE PAIR 4 PI 1
BONDING 3 PI 1

TRIPLET 2 PI 2
TRIPLET 3 PI 3

TOTAL GAIN

AE(uisp0)

-0.00003

-0.00387

-0.00025
-0.00035

-0.00403

 =0.00002

AE(ui)
-0.00004

-0.00373

-0.00018

- -0.00005

-0.00454
-0.00001

-0.00854

AT (i)
' 0.00001

-0.00014%

=-0.00030 .

0.00050

-0.00003

CA(ui)
-0.00003

-0.00026

-0.00035

-0.00404
-0.00002

-0.00857

,Oc

 -0.00087

-0.03080

-0.00762

-0.01134

-0.03821
-0.00185

ert



TABLE

R
1.70CC
1.8000
1.96C¢C
1.9230C
1.9614
2.00C¢C
2.05CC
2.1000
2.2000C

9.

SP
-0.05904
~-0.08393
~0.09551
-0.09655
~-0.09725
~0.09667
~0.09421
-0.09017
-0.07804

SpP

~-54.43626

NH

MCLECUL AR

K+8B
-0.04687
~G.07216
-0.08420
~-0.08534
-0.08623
-0.08582
-$.08357
-0.566805

N ATOM TOTAL

K+B

-54.43077

BINDING ENERGIES OF NH FROM VARICUS WAVE FUNCTIONS

BINDING ENERGY
B PNO
~-0.054C1 -C.03955
-0.G7928 ~L 06274
-0.09128 -C.07267
-0.09242 -0.07336
—-0.09330 ~0.07348
~-0.09288 ~-C.07233
-0.08680 ~C.06448
-0.07506 -0.05115
ENERGY
B PNO
~54,39933 ~54,39933

PI1



TABLE 1C. COMPARISON OF SPECTROSCOPIC RESULTS FOR NH

SPECTROSCOPIC N
CONSTANTS sp PNO EXPTL SCF

E  (HARTREE) -55.03365 ~54.57293 -55.252% ~54.97838
R (BOHR) 1.9619 1.9449 1.9614% 1.923

B (1/CM) 16.625 16.917 16.668% 17.319

o (1/CM) 0.466 0.345 0.646° 0.5715
ke(IO—SDYNES/CM) 13.359 13.935 5.410° 7.003

w (1/CH) 4909.6 5014.3 3125.6° 3556

w X (1/CM) 78.3 9842 78.5° 66.78

CCEFFICIENTS IN THE PCLYNOMIAL EXPANSION FOR THE ANALYSIS OF DUNHAM

SP PNOC EXPTL
aO(IICM) 362463.9 371564.2 14652€E.9
a; -2.053571 -2.008316 -2.211289
a, 2.130814 1.173053 2972499

gREFERENCE (1)
REFERENCE (22)
CREFERENCE (39)

STT



TABLE

11.

NHy, R=1.9614%

<r..”>

<r.>

<r

PNOD
CORR
TOTAL

PNC
CORR
TOTAL

PNO
CCRR
TOTAL

PNO
CERR
TOTAL

PNO
CCRR
TOTAL

K SHELL

C.057305
0.000023
0.057329

G«493539
0.000008
0.493547

0.017871
0.000056
0.017928

0.980272
0.00C055
0.98C326

1659295
-0.000126
1.659169

LONE PAIR

0.337982
0.000363
0.338345

C.656525
0.000238

0.656763

0.559606
0.001780
0.561387

1.878250
0.001774
1.880024

0.269655
-0.000133
0.269523

BONDING

0.428235
0.00C567
0.42880C3

0.410371
-0.000099
0.410273

0.898016
0.0033¢61
0.901377

0.921254

-0.000126

0.921128

0.193886
0.00C147
0.194033

DECOMPOSITION OF ONE-ELECTRON EXPECTATION VALUES

TRIPLET

C.3€1207
0.000C91

C.361298

0.601263
c.06C089
0.6C1352

C.667530
0.000550
0.668080

1.575166
0.0C060C
1.575766

Ge234338
0.000042

0e23438C

TOTAL

1.184730
0.G01045
1.185775

2.161698
0.C00236
2161934

20143024
0.005747
2148771

50354941
0.002302
5357244

2357174

-0.C0007G

2.357104

0.088

0,011

0.267

C.C43

-0.003

9T1



TABLE

11.

NHy R=1.9614

<cos 6

<cos 6

<z . _>

LZ_..>

(CONT.)
K SHELL
PNC Cel274195
CGCRR -C.000000
TCTAL C.127418
PNC -0.000224
CCRR €.006000
TCTAL =0.000224
PNC 0.248459
CGRR -0.00€003
TOTAL Ca248455
PND -0.000160
CORR 0.0G0000
TOTAL -0.000160
PNO 0.49C510
CCGRR -0.000000
TCTAL 0.490510

LONE PAIR

0.106784
~-0.000019
0.106765

0.000032
-0.061936

0.218614
-0.000068
0.218546

~0.090974
0.000002
~0.090972

0.581324
~0.000002
0.581322

BONDINC

0.227984
0.00C356
0.228341

0.125324
0.000180
Ce125504

0.123333
-0.00C687
0.122646

0.239251
0.000889
0.24G140

0.251099
-0.000889
0.25C210

TRIPLET

0.113546
-C.0C0CC9
Ga113537

C.0C8C26
-0.0G0003
C.0C80C23

0.167963
-C.000C18
0197945

0.013801
-0.0000C13
€.013788

0.476549
0.000C13
C.476562

TOTAL

0.575733
0.000328
0.576061

0.071158
0. 000209
0.C71367

0.788369
-0.000777
0.787592

0.161918
c.Go0878
0.162796

1.799482
-0.000878
1.798604

%

0.057

0.293

0.539

LTT



TABLE

l1.

NHy R=1.9614

<z

<E>

<n>

<g?>

PNO
CORR
TCTAL

PNO
CCORR
TOTAL

PNO
CGORR
TOTAL

PNC
CORR
TOTAL

PNC
CORR
TOTAL

(CCNT.)

K SHELL

0.005963
€.000022
G.005985

0.968363
0.000021
0.968384

0.280842
0.000016
0.280858

-0.222409
G.000008
~-0.222401

0.318592
£.000066
0.318658

LONE PAIR

0.200792
0.000508
0.201300

1.519436
0.000501
1.519937

0.507039
0.0C0306
0.507346

~0.162406
0.000064
~-0.162342

1.136214
0.001886
l.1381C0

BONPING

0.633969
0.003021
0.636990

Ce.657207
-0.000467
0.656741

0.427555
0.060239
0427794

0.005108
0.G0C340
0.009447

0.850367
0.001314
0.851681

TRIPLET

0e139241
0.000157
$.,139397

1.046876
0.000207
1.047C84

0.490706
0.0CGC92
0.490798

-0.122390
0.00CGO1
-0.122389

1.078235
0.C00583
1.078817

TOTAL

C.979966
0.C037G7
G.983673

4.191883
C.000262
40192145

1.7C06143
C.000653
1.706796

~0.498097
0.C00413
-0.497685

3.383408
0.003848
3.387257

%

0377

0.006

0.038

0.114

8T1



TABLE

11.

NH,y, R=1.9614

<r..*r.>

<xZ+y?>

PNC
CCRR
TOTAL

PNO
CCRR
TOTAL

PNO
CORR
TOTAL

PNO
CORR
TCTAL

PNC
CCRR
TOTAL

(CCONT. )

K SHELL

C.20C316
-0.00C009
C.200308

0.113754
0.000072
0.113826

0.011908
0.00C034
0.011942

0.001280
~0.00000C3
0.001277

-0.001184
-0.000083
-0.001267

LONE PAIR

0.131162

-0.000038

0.131124

0.966631
0.001851
0.968482

0.358814
0.001273
0.360087

0.727789

-0.000014

0.727775

-0.934718

0.000790C

-0.933628

BONDING

0.095423
0.C0C3é8
0.G095751

0.726085
0.000910
0.726995

0.264046
0.00C341
0.264387

0.047390C
-0.007112
0.040278

-0.375544
-0.039888
-0.415432

TRIPLET

0.087684
C.0C0OC15
C.087699

0.952685
0.000546
0.953231

0.52829¢C
0.000393
C.528682

-0.110405
C.CC01C3
-0.11G03C2

2.088354
C.000746
2.089100

TOTAL

0.514585
0.C000336
Ce514922

2.759155
0.C03378
2.762533

1.1630569
0.C02040
1.165099

0.666054
-0.007025
0.659029

0.7769C8
-0.038435
0.738473

C.C65

0.122

0.175

"1.066

611



TABLE

R

1.800C
1.9C0C
1.923¢
1.9614
2.GC0OGC
2.050C
2.100C

R

1.8C00
1.90GG
1.9230
1.9614
2.0600C
2.05CC
2.1000

12.

ONE~-ELECTRON PROPERTIES AS FUNCTIONS OF INTERNUCLEAR DISTANCE

PNO

1.157355
1l.174861
1.178518
1.184730
1.190628
1.199457

1.206534

PNO

2.028574
2.100594
2116345
2143024
2.168965
2.207668
2240596

<r. .>
N

CORR

0.000849
0.000956
0.000989
0.001045
0.001106
0.001195
0.001305

2
<r >
N

CORR

0.004519
0.005201
0.005398
0.005747
0.006124
0.006689
0.0C7361

SP

1.1582C3
1.175817
1.1795C7
1.185775
1.191733
1.200653
1.207839

SP

2.033093
2.105795
2.121742
2.148771
2.175089
2.214356
2247956

PNOC

2.024953
2.109639
2129153
2.161€98
24194327
2237534
2.280071

PNO

4,747971
5120820
5.207259
5354941
5.5C4861
5.708C81
5909812

<r..>
H

CORR

C.00C371
C.00C290
Cc.00C271
C.00C236
€C.00C197
€C.00C150
0.000103

2
<r >
H

- CORR

c.002818

0.002521

C.002444
C.002302
C.C02135
€C.001929
C.001719

sp

2.025324
2.109929
2.129424
2.161934
2194525
2.237684
2.280174

Sp

4.750788

5:122541
5.209703
5357244
5.506995
5710010
5.911631

02t



TABLE

R

1.800C
1.9C0C
1.923C
1.9614
2.0000
2.050C
2.1000

R

1.8006C
1.9G0C
1.923¢C
1.9614
2.000¢C
2.050¢C
2.1G60C

12.

(CONT.)

PNO

2.368154
2.360897
2359560
24357174
2.354818
24351659
2349234

PNO

0.070001
0.070776
0.070867
0.C71158
0.071360
0.071651
0.071910

-1
<r >
N

CORR

-0.000134
-0.000093
-0.000070
-0.060054
-0.000033
-0.000018

<cos 6N>
CORR

0.000133
0.000181
0.000191
0.000209
0.000227
-0.000248
0.000268

SP

2.368020
2.3608C5
2.359475
2.3571C4
2354765
2351626
26349217

Sp

0.070134
0.070957
0.071058
0.071367
0.071587
0.071899
C.072178

PNO

0.621271
£«592397
N.585974
C.575733
0.565815
0553330
C.54131C

PNO

0773134
0.T78B2666
C.784874
0.788369
0791814
0.795862
0.80018¢C

-1
<r >
H

CORR

¢.000183
¢.000273
¢.000293
C.000328
0.00C364
C.C0C408
C.000450

<cos 6H>
CORR

-C.000511
~C.G0C664
-0.00C705
-C.000777
-0.00C854
-0.00C958
~-C.001075

SP

0.621454
0.59267¢
0.586267
0.576061

'0e 566178

0.553738
0.541760

Sp

0.772623
0.782002
0:784168
0787592
0.79096C
0.794904
G.799105

et



TABLE

R

1.8C00
1.90GC0
1.923¢
1.9614
2.000C
2.0500
2.1000

R

1.8CCQO
1.9000
1.9236
l.9614
2.0C00
2.050C
2.1000

12.

{CONT.)

PNO

Ce144612
0.155414
C.157830
0.161918
0.166026
0.171241
0.176353

PNO

0.903821
0.951313
0.961871
0979966
0.998140
1.023499
1.046660

<z >
N

CORR

0.000473
0.000705
0.000768
0.000878
0.000997
0.001161
0.001343

2
<Z >
N

CORR

0.002424
£.003127
0.003333
0.003707
0.004123
0.004737
0.005466

SP

0145085
0.156119
C.158598
0162796
0.167023
C.172402
0.177696

SP

0.906245
0.954440
0.965204
0.983673
1.002263
1.028237
1.052127

PNO

1.655388
1.744586
1.76517C
1.799482
1.833974
1.878759
1.923647

PNO

34623217
3.970740
4.C52786
4.,191883
4,334035
4.523912
4. T15977

<Z_.>
H

CORR

-C.000473
~C.000705
-C.00C768
-6.00C878
-C.00C997
~-C.001161
~C.001343

2
<z..°>
H

CORR

€C.00C723
C.00C447
C.00C379
6.006262
C.00C134
-C.00C022
-C.00C176

SP

1: 654915
1.743881
1.764402
1.798604
1.832977
1.877598
1. 922364

sp

3.623940

3.971187
4.053164
4,192145
4.334170
4,523890
4.715801

(AN



TABLE

R

1.8000
1.9CCOC
1.923Q
l.5614
2.CC00
2.0500
2.10GC

R

1.8C000C
1.9000
1.9230C
1.9614
2.000G
2.050C
2.1C0C

12.

(CONT.)

PNO

1.767948
1.728684
1.720058
1.706143
1.692477
1.676581
1.660288

PNO

3.678629
3.489545
3.448700
3.383408
3.319886
3.247141
3.173351

<E>
CORR

0.000678
0.000656
0.000655
0.000653
0.000652
0.000656
0.000671

<g2>
CORR

0.004341
0.004005
0.003945
0.003848
0.003749
0.003660
0.003609

SP

1.768626
1.729340
1l.720713
1.706796
1.693129
1.677237
1.660959

SP

3.682970

3.493550

3.452645
3.387257
3.323635
3.250801
3.176960

PNO

~-0.481999
-0.491989
~-Ce49435C
-0.498097
-0.501850
-0.506379
-0.511208

PNO

C.504423
0.510796
C.512222
0.514585
0.517027
C.520021
Ce.523C24

<n>
CORR

C.C0C265
C.00C351
C.C0OC373
C.00C413
0.000454
C.00C510
€.00C572

<n?>
CORR

¢c.00C188
€C.000273
$.00C295
C.00C336
Cc.Cc0C380
C.00C441
C.00C509

SP

~-C.481734
-0e493977

-0.5C1396
-0+ 505869
-0.51C635

sP

0.504611
0.511068
0.512518
04514922
0.517407
0520462
0.523533

€21



TABLE

R

1.8000
1.9¢€00
1.923C
1l.9614
2.0C00
2.0500
2.1000

R

1.8000
1.900¢
1.92390
1.9614
2.0000
2.050¢C
2.1600

12.

(CONT.)

PNO

24571106

2.688321
2.714721
2759155
2.802859
2.865181
2.921986

PNO

C.643103
0.656687
C.660360
0. 666054
C.671792
0.680075
0.689175

<Nty
CORR

0.003364
0.003369
0.0GC3374
0.003378
0.003369
0.003381
0.0G3418

d
CORR

~0.003780
~0.005641
~0.006145
~-0.007025
~0.007978
-0.009287
~0.010747

SP

2.574470
20691690
20718096
20762533
2.806228
20868562
20925404

SP

0.639322
0.651045
0.654215
0.659029
0.663813
0.670787
0.678428

PNO

1.124753
1.149281
1.154474
1.163059
1.170825
1.184168

1.193935

PNO

0.541491
C.677186
0.715801
C.776%908
0.837401
0.92091C
1.020028

<xZ4y?>
CORR

C.002095
0.002074
C.002065
C.00204¢C
C.C020C0O
C.C01951
G.001894

Q
CORR

-0.019836

-0.029924
-C.032924

-C.038435

~-0.044655
-C.053807
-C.064699

SP

l.126848
1.151354
1.156538
1.16509¢°
1.172826
1.186120
1.195830

SP

0.521655
0.647262
0.682877
0.738473
0:,792746
0.867103
0.955329

Vel
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TABLE 13. GEMINAL TWO-ELECTRON EXPECTATION VALUES

‘NHy R = 1.9614

<x

<r

12

12

_1>
PNO MATRIX
K
K 0.147055
L 0.133407
B 0.108549
T

0.130473

CORR MATRIX

K
L
B
T

PNO

- oM~ X

K

-0.00175C

0.000046
0.000018

MATRIX

K
0.005106
0.329995
0.523954
0.392458

CORR MATRIX

- o~ R

K
0.000856
0.001050
0.001955
0.000346

L
0.025065

0.072913
0.084075

L

-0.000369
-0.000023
-0.000023

L

0.150429
0.990157
0.788042

L

0.000650
0.002584
0.001161

0.024528
0.077617

-0.001853
-0.000033

0.191158
0.882356

0.015991
0.002214

0.020820

-0.000294

0.1905¢C5

0.000160



TABLE 13.

(CONT.)

NHy R = 1.9614

<cos GN,12>

PNO MATRIX
K
K 0.C000G0
L -0.000076
B -=-0.001009
T -0.001662

CORR MATRIX

- X

<cos 6

K
-0.000409
-0.00000C0
-0.000C05
~-0.000C01

H,12°

PNO MATRIX

- ®rr X

K
0.035275
0.124151
0.070041
0.112332

CCRR MATRIX

-~ X

K
-0.000004
-0.000041
-0.000391
-0.000012
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L

0.002194
-0.031377
-0.021193

L

-0.000010
0.000139
0.000057

L

0.027310
0.061049
0.092213

L

-0.000025
-0.000355
-0.000023

0.008975
0.001691

-0.001198
-0.000C04

0.008692
0.054471

-0.002437
-0.00030¢C

0.000037

-0.00CC03

0.022394%

-0.00CC63



TABLE

R

1.8000
1.900¢C
1.9230
1.9614%
2.000C
2.050C
2.1000

R

1.800G
1.9C0G
1.923¢C
1.9614
2.0000
2.0500
2.1G00C

l4.

TWO-ELECTRON PROPERTIES AS FUNCTIONS OF INTERNUCLEAR DISTANCE

PNO

C.837289
£.828914
0.827267
0.824503
C.821939
C.818085
0.815285

PNO

~0.042490
-C. 042440
~0.042437
-0.042420
-0.042411
-0.042391
-0.042373

-1
<ry, >

CORR

-0.004192
-0.004288
-0.004311
-0.004348
-0.004381
~0.004426
-0.004473

SP

0.833097
0824626
0.822956
0.820155
C.817558
0.813659
C.810812

<cos eN 12>

’

CORR

~0.001357
~0.001406
-0.,001417
-0.001434
-0.001452
-0.001473
-0.001494

SP

-0.043847
-0.043845
-0.043854
-0.043854
-0.043863
~0.043864
-0.043868

PNO

4.213272
4.358732
4.390426
4.444160
4.496178
4e574153
44640013

PNO

0.582798
0.59847C
0.602123
0.607927
C.613672
0.620454
C.627719

2
<r12 >

CORR

€.020195
C.023679
C.024596
C.026167
C.027809
C.03C129
0.032692

<cos GH 12>

14

CORR

-C.002939
-C.003364

-0.003470

~-C.003652

-C.003838

-C.004087
-C.004351

SP

4.233466
44382411
4.415023
43470326
44523987
4. 604282
4,672705

SP

0.579859

0.595106
0.598653
0.604276
0. 609834
0.616367
0.623369
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|

———- =1 BOHA

NATURAL ORBITAL CONTGUR MAP 1.
NH K SHELL 1 SIGMA 1 (0C=+0.99982)
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F——— = 1 BOHR

NATURAL ORBITAL CONTOUR MRAP 2.

(0C=-0.01128)

NH K SHELL & SIGMA 2
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F———- =1 BOHR

NRTURRL ORBITAL CONTOUR MAP 3.
NH K SHELL 3 PI 1 (0C=-0.00873)
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—— = 1 BOHR

NRTURAL ORBITAL CONTOUR MRP 4.
NH K SHELL Y 5IGMA 3 (0C=-0.00863)
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F——— =1 BOHA

NATURAL ORBITAL CONTOUR MRP 5,
NH LONE PRIR 1 SIGMA 1 (BC=+0.99923)
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————— =1 BOHR

NATURAL ORBITAL CONTOUR MAP 6.
NH LONE PRIR 2 SIGMA 2  (0C=-0.03259)
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F———- =1 BOHR

NATURAL ORBITAL CONTOUR MAP 7.
NH LONE PRIR 3 DELTA 1 (0C=-0.01254)
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———1 = 1 BOHR

NARTURRL ORBITAL CONTOUR MRP 8.
NH LONE PRIR 4 PI 1 (0C=-0.00907
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—— =1 BOHR

NATURAL ORBITAL CONTOUR MAP 9.
NH LONE PAIR 5 SIGMA 3 (0C=-0.00117]



137

- h
e N
I/ \\
/ -\
I. e Ll d Y -
. J \

L - \ Y

/ / R - \‘\
1 SN \ '
\ i/ /' iy \' \ /
\ { l ( t'

\ I
‘\ \ k\l {/ T / ; }
_\~ {;., '\( r/z// -
- f.
- \\.J / e e .

l

———- = 1 BOHR

NATURAL ORBITAL CONTGUR MAP 10.
NH BONDING 1 SIGMA 1 (0C=+0.99377)
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1 BOHR

L1.

NATURAL ORBITAL CONTOUR MAP

NH BONDING 2 SIGMA 2

(0C=-0.09961]
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= 1 BOHR

12,
-0.02787)

NATURAL ORBITAL CONTOUR MAP

NH BONDING 3 PI 1

(0C=
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= 1 BOHR

13.

NATURAL ORBITAL CONTOUR MAP

0C=-0.02652]

NH BONDING 4 SIGMA 3
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F———- =1 BOHR

NATURAL ORBITAL CONTOUR MAP 14.
NH BONDING 5 SICMR 4 (0C=-0.01091)
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F——— =1 80HA

NATURAL ORBITAL CONTOUR MAP

LS.
NH BONDING G SIGMR 5

(0C=-0.00797
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———— =1 BOHR

NATURAL ORBITAL CONTOUR MRAP 1G.
NH BONDING 7 SIGMR 6  (0C=-0.00817)
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———- = 1 BOHR
NATURAL ORBITAL CONTOUR MAP 7.
(0C=-0.00369)

NH BONDING 8 SIGMR 7
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|
F— =1 BOHR

NATURAL ORBITAL CONTOUR MAP 18.
NH TRIPLET 1 PI 1 (0C=+0.939925)
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—— =1 BOHR

NATURAL ORBITAL CONTOUR MAP 19.
NH TRIPLET 2 PI 2  (0C=-0.03873)
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——- =1 BOHR

NARTURAL ORBITAL CONTOUR MAP 20.
NH TRIPLET 3 PI 3  (8C=-0.00182
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———- =1 BOHR

NATURAL ORBITAL CONTOUR MRP 21.
NITROGEN K 1 S 1 (6C=+0.99979)
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I

——- =1 BOHR

NATURAL ORBITAL CONTOUR MRP 22.
NITROGEN K 2 S 2  (0C=-0.01156)
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—— =1 BOHA

NATURAL ORBITAL CONTGUR MAP 23.
NITROGEN K 3 P 1 (0C=-0.00980)
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l

NITROGEN L

—— = 1 BOHR
NATURRL ORBITAL CONTOUR MRP 2Uu.

1 51

(0C=+0.993UB)
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F———- =1 BOHR

NARTURAL ORBITAL CONTOUR MRP  25.
NITROGEN L 2 D0 1 (6C=~0.013206)
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= 1 BOHR

NATURAL ORBITAL CONTOUR MAP 2B.

-0.00802)

(0C=

NITROGEN L 3 P 1
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——- =1 BOHR

NRTURAL ORBITAL CONTOUR MAP 27.
NITROGEN L 4 52  (0C=-0.00171)
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I
——— =1 BOHR

NATURAL ORBITAL CONTOUR MRP 28,
NITROGEN L S P 2  (0C=-0.00169)
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F———— =1 BOHR

NATURAL ORBITAL CONTOUR MRP 29.
NITROGEN L 6 S 3  (0C=-0.00158)
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= 1 BOHR

NATURAL ORBITAL CONTOUR MRP 30.

NITROGEN Q@

(6C=+1.00000)

1 P1
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CHAPTER I1. ATOMIC ORBITAL OVERLAP INTEGRALS



159
INTRODUCTION

Overlap integrals play an important role in molecular
quantum mechanics when atomic orbitals are used for expanding
electronic wave functions. Since the expectation values of
several one-electron operators can be expressed as linear
combinations of overlap integrais, and since Coulomb integrals
can be expressed as a quadrature over them (102), their use-
fulness transcends their function of determining the metric
of the non-orthogonal basis set. In the context of ab initio
calculations of molecular properties, an accurate and efficiént
method for numerically evaluating these integrals is
essential.

Several schemes have recently been reported in the
literature (103-105) for this purpose. Although the present
investigation owes considerable stimulation to the work
mentioned in Reference (103), it is based on a different
analysis. The resulting expressions are different and con-
siderably simpler than those obtained before. Compatibility
with electronic digital computers has been influential in the
arrangement of the resulting equations. The formulation given
is-particularly advantageous if ample storage capacity for

large arrays of numbers is available.
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OVERLAP INTEGRALS
Definition

If the normalized Slater-type atomic orbitals on centers

A and B are given. by

Tr, -
-1 = v
(Anfm; L) = (2c)“+1/2[(2n) 171/ % A e AYﬁm(QA¢A)’
(Bn' ﬂ'm"c ) = (ZC )n+1/2[(2n,) ] 1/2 nv;lé-C!rB . ot )
’ B Yy m! "B B"}
‘ ' (105)
then the overlap ihtegral,between them is
‘mm? - ' * ‘ . :
sﬁﬁ.“"_" (ppspp) = [AV(Anfm;T) (Bn'4'm'; ")  (106)
where ' "
p, =Rt - and pg = RT' - - o)

' The coordinate systems on A and B are defined as fbllowsiv
the Z axis pointe toward the origin B, the ZB axis points

toward the or1g1n A, XA and XB are parallel YA and YB'are.
parallel, and the distance between A and B is R. As auresult
of thlS choice, the integral values for R = 0 differ by the
factor (- 1)£+m from what they are when both atomic orbitals
are referred to the same coordinate system, namely,
(Xp¥pZp) -

The spherical harmonics can be chosen real or compler

In either case one finds

24 'mm' ﬂB m

Shn® (pA’pB) = Oum+Spne (pA’pB) (108)v
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L4'm

an? depends only on [m]. We therefore consider the

where S

case m>0. Then
Y, (00)= @‘z (cos ©) @ (9) (109)

where 633 are the normalized associated Legendre functions and
*
the ¢ (¢) have the property fé @m (¢) ‘Qm,(¢) =6 . By

Rodrigue's formula, 6)3 can be expressed as

y/ .
P (cos 9)=K£m(l—cosze)m/2 5 cMicos 6+1)% ™ (cos 6-1)F%(110)

a=m =
with
_ f+mY) , 24+1 z) 1/2
KZm B [(2£+1)( m )/2 (m ] (111).
mo_ {4 £ '- :
Ca B (a) (u+m" (112)
Integration
The integration is performed in elliptic coordinates
defined by
£ = (ry + rg)/R 1< E<w
n = (r, - rg)/R -1 < n<1 (113)
¢ =9, = ¢g 0<¢ <2

av =@/2>3¢ 2 - n?) dgand-

The integrand is transformed with the help of the relationships:

[

r, = 3RE+), ry = $RE-N), (114)

i

(cos ©, * 1) (1 £)(@ 1n)/(g+n), ' (115)
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(cos @ + 1) = (1 #)(LFn)/(E-n), (116)
(gn)d = & (?) &It amy?, | (117)
= i=o\t! j ~
T U . o
el - & (3) et (128)
i=0 | - | |

Substitution of these identities into the integral and
algebraic rearrangéménts yield

3 4 4 n-4 n-4' a+a'-m
n+l/2an'+1/ge-p ¥ & £ £ £ T

S = -
a=m d=m B=0 B0 y=0 aatPBty

Pa

s 1 WL
?ﬂie‘p(5*1)(E~1)n+nL5'ﬁLWf dne~°" (14m) %" f6+z (l_n)a'_a+6#£
1 : -1 ’ ‘

(119)
where o ‘
Taarppry = (_1)z+%'+a+a-K2sz'm[(29) to(zn) 17V % e A
— 4\ ['-2" Jo+a'-m
(BHB ( "k . (120)
and 1 |
1 1 :
p =5y +rg), 0 =35, - pp)- (121)

The & integration is straight forward, and the n
integration leads to the auxiliary functions IaB(x)’ defined

by (103, Eq. 19)

1 _ raroQ+B+1
I = fl dne”*N(Lem%(1-mP = q'%&fs+1§? Ip(x) . (122)
In Appendix A,it is shown that
a+p
- T x"I“(x)wﬁ‘B (123)
""=

where
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2uy 1
I (x) =1 (x) = [(2u+1)/2%+1] ( )f dn(1-nHPe X" (124)
K kp S

and
g0 - e ot ()P (8 e B

Thus Eq. 119 becomes:

£ 4 n-f n’-p° a+a’-m
? | -
S=(pAn+}/2an +1/2/pn+n +ly P ¥ s 5 5 >
a=m o'=m B3=0 p'=0 v=0
b+ 2'+B+B* . . .
uzo (n4n'-p- ‘y)- Taa'ﬁB'y

Wua-a'+6+z',a'—a+5'+£ pﬁ+ﬁ'+7 o”'Iu(m)- (126)

The expression, Eq. 126, is now rearranged in two steps.
First the summation over y is replaced by a summation over the
new index v defined by

vV =B+ B + ¥ (127)

then the summations are rearranged as follows

z T x — U
a a p v 7} v

c M
T M

Iz z z Zz
‘B B 6 pra o (128
and the corresponding changes in the summation limits are

made. Thereby one arrives at the final formula

4 1 4
S22 (0, ,05) = (20,/p 440 ) ™ 220/ o )" T2
n+n'
Ly (129)

p=0
where
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£, = 1,[(pp-pp) /2] exp[(p,+pp)/2] (130)
0
2 o
g, = UEUl(pAwB)-‘Auo(nn'_M'm) (131)

with the limits

v, = Max §0, |4-8* |-p, p -Co+29} (132)

1

vy = M + n' - m. - (133)

The constants A are defined by

: . f+m) [£7+m 1/2
Auu(nn'zz'm)=(-1)z+z' [(23+1)(2ﬁ +1)£ ) ( tn) ]

) Gl &) G

(n+n'-v)! ' 00t .
n!ﬁ?g(gu)Ag Buo(nn £4'm) (134)
n
where
a. 4
2 2 .
_E . nl_zl Al
' ) = Z Z [] [ [
Byo(nnt 2l m) B=8, ( B ) Br=R" ( B* ) (+B+B + L+ +1) !
J/ 4%
y/ J av Al
L (088, o )
a=ay (a)(a—m) av=avl at-m;

'(a+a'4m) (a-a®+B+L') ! (a'-a+B'+4)!

v-p-p*
K oy ? 1 . ? -
L (oc a ;-.E}+£ +A) (oz a+ﬁ +13+u A)(u) (135)
A=0 ‘
In Egs. 134 and 135, the following definitions have been used:
A = Minfp+o+£+4Y, p+n+en'd+l
B, = Maxt0, p-n'-4, v-n'-gimi

Pa

Minfn-g, o
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By = Max{0, p-p-4-27, v-p-4-L+m}
By = Min{n'-4%, v-p4
a; = Maxfm,v-p-B'-4'+md

Maxf{m, v-p-pi-a+mi.

Q
=t
i

Discussion
The constants B have the symmetry

B, (nn’24'm) = (-1)”Buu(n'nzlzm) (136)

corresponding to the identity

Szz'm

o
nn?t (pA’pB) = Sﬁ'ﬂm

n (pB,pA). (137)

Guided by the observation (103) that the overlap integral
should be proportional to Rlz_qu, the constants BMV were
investigated and shown to be identically zero whenever

L+ v < |g-4"] for all possible combinations of quantum
numbers. Thus R]Z—ﬂ'[ is the lowest power of R occurring in

the overlap integral. It was further found that for n=n' and

=4", B,

The constants B involve only the multiplication, addition

is identically zero if B is odd.

and subtraction of exact integers (the factor A used in Eq.
135, is chosen such as to be always greater than B+B+B "+ 4+
£'+1) so that the quotient of the corresponding factorials

is an exact integer). Thérefore, in spite of negative terms,
no loss of figures is incurred if integer arithmetic is used

to evaluate the B's.
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The final constants, A Eq. 134, can be computed once

po’
for all combinations of quantum numbers desired, stored on
tape or disc in a continuous one-dimensional array and read
into the computer as a block when a calculation of thesé
integrals is to be made. They afe best stored sequentially
in the order in which they are used when evaluating the
expression in Eq. 131. From a given set of quantum numbers,
the starting-index which corresponds to the first constant
can be generated.

The functions fu are discussed in Appendix B.

The special case of T=C"' yields

- - ' :
s (o0 =€ Pa T (20,)° AR 44", (138)

nn?

=] g- 47|
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'NUCLEAR ATTRACTION AND KINETIC ENERGY INTEGRALS

An energy minimization caléulation implies the cbntinued'
recalculation of certain one-electron two-center integrals
fof each variation of the atomic orbitals. Consideraﬁle
savings‘of computational time can be achieved by calculating
‘certain two-center nuclear attraction, kinetic energy and
overlap intégrais at the same time. The fdrmer types of
“integrals are given by the following standard fofmulas (106):

<(Anfm; C) vl-r—fl (Bn'g'm'; TY>= - -Z, 6mm,angsﬁ’31mn, (pyspg) (139)
~Zp £4'm o R
<(An£m ;)l [(Bn pmt0)>= -2y 8,8 LS, 0 (p,,pp) (140)
g
. : \ ]
<(An£m;§)"-%V2|,(anﬂ’lﬂ;i)>=— %ﬁz 5mm'{sﬁﬁTv§?A’PB)
24'm £4'm
+ b Sn 1,n? (pA’pB) + 60,n—2-lcnz S -2, n'(pA’pB)}
(141)
where :
a =[ 2 ]1/2
n niZn—li
__l 8n J1/2
by [2n—1] (142)

2(n+4) (n-4-1) 1/2
T Tn(n-1) (2n-1) (2n-3) | ’

Thus it can be seen that for a particular pair of orbitals,
- only one array of the functionsf“(pA,pB),neéds to be

calculated for 0<u<n+n'., From this one set of f values,
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the overlap function S with subscript pairs (n,n'), (n-1,n*%),
(n, n*'-1) and if necessary (n-2, n') can be computed.by
summing the double series in Eq; 129. Since the calculation
of the f funétions represents the largest expenditure 6f‘time,

this grouping is economical.
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COMPUTATION TIMES

For each of the 83 distinct combinations of the quantum
numbers, (ngm) and (n'/'m) which give rise to hon—zero
integrals for n and n' < 4, the two-center overlap, kinetic
energy and nuclear attraction integrals, as described above,
were computed and timed for the most time consuming case of
L # Ty By taking all integrals with a given value of n,, =
(n.+n')/2 and averaging the observed times per integral,
the following formula was found to give the computation time
dependence of these integrals on the average principal
quantum number n_ _:

av

2

av (milliseconds/integral).

time per integral = 1.1 + 0.5 n

Calculations of all two-center integrals Qf the above
types occurring over basis sets of orbitals (again with dif-
ferent orbital exponents) were performed and timéd as a
function of N,vthe number of orbitals on each center: N =1
correspondng to a 1s orbital on each center, N = 2 correspond-
ing to a 1s and 2s orbital on each center, . . . , N =14
corresponding to 1s, 2s, 2poc, 2pm, 2p7, 3s, 3p0,3pw,3p?,3do,3dw,
3d7, 3d6, 3d6 on each center. By taking the value of tﬁe
total time spent in each case and dividing by the number of

non~-zero integrals actually computed, the following formula

was found:
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(A"erage time per )= 1.4 + 0.4 N - 0.01 N2 (milliseconds/
non-zero integral integral).

However, dividing the total computation time in each case by
the total number of integrals, Nz, which includes those
integrals that are identically zero; gives an average time
of 1.9 £ 0.3 milliseconds per integral, independent of N.
The times quoted here were obtained on an IBM 360/50
.computer using all FORTRAN programs with double precision
arithmetic and making use of the criteria discussed in
Appendix B for computing the functions fﬂ to ten figures.
Multiplication by 0.3 would give times comparable wifh IBM

7094-type equipment.
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APPENDIX A: DERIVATION OF EQUATION 123

It can be shown that the functions in Eq. 124,

1
_ _ 2k+1 2k\ -XNgqy_. 2\k
Ik(x) - Ikk(x) = 22k+1 (k ) i; dne (1 n ) ’ ’ (Al)
can be expressed as
DRk (ki) (= [ -xn
I () = L k(2 ( ) | L dane™" B, (n). (A2)
X 2k+ k .

The expression of Eq. 123 is therefore obtained by substi-

tuting in Eq. 122 the expansion,

M g OB 4p
(1+n) (1_n) = z Dk Pk(n) (AS)
k=0 _
where
1 o :
DﬁB =-%(2k+1) -[;1 Pk(n)(1+n)a(1-n)8dn. (A4)

Using, in Eq. A4, the representation,
-k £ (k|2 A k-2
P.(n) =2 z (n+1)" (n-1)" 7, (A5)
k r=o ‘A -

one finds

k 1 — 1
p*® = (k1) 2B -D¥ £ (-1} (f)z (%zié;(iii)?). (A6)

k
A=0
whence Eq. 123 follows directly. A different expansion of these
functions has been discussed by Roothaan (107). It may also be

mentioned that
L () = [(2k + 1) 1/k](2i%) ", (ix) (A7)

where jk(z) is the spherical Bessel function (108, p. 437, 443).
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 APPENDIX B: DISCUSSION OF AUXILIARY FUNCTIONS 2,(Py,0p)

‘The functions fu(pA,pB) are proportional to the‘cohfluentl

hypergéometrié'funcfions:

Co A o
fp(pA’ pB) = e ]_Fl (B+1, 2u+2; QA"'QB)
| g o

and can also be'represented by the generalized hypergeometric

series;' )
~(pp+pg)/2

EROVSRER oF 1 [#+3/2; (pA-gB/g)zl. (B2)

From this representation follows the property:

‘ffu(pA,pB) = fp(pB,pA)' » | (B3)
which was used in Eq. 137. It is also easily shown that the
following relation is satisfied:

exp[Min(p,, oB>] < 2,(ops0p) < exp[Max(py,pp)]. : (B4) "
These functions can be calculated by means of the

recurrence relation
1, (op,05) = [4(2+1) =1/ Cop0p) ®1[2, 50, 0p)
- fp—l(pA’ pB)]’ N (BS)

where the starting functions are given by:

1, P Pa
£_1(pprpg) = (e B e ) : _(BG\)

£,(pys0p) = ('e—PB -e A)/( -pr) (B6')
0'ParPp PA ~PB ‘
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_pA
£,(PpsPy) = . (B7)

Using an IBM 360/50 with double precision arithmetic,

the relation (B5), gives ten or more significant figure

results whenever

>(-0.13 + 0.15 p (B8)

max) “max

represents the highest index value pu

lpA_pB‘
is satisfied. Here Hnax
needed for a particular integral, namely umax=n+n'. When

(gA—gB) is smaller than given by Eq. B8, then fu is calculated

by means of a continued fraction (109):

f“( DAs pB) = r].l.( pA’pB) fp.—l( pAs pB) (B9)

where

The number of terms t, needed in the continued fraction
in order to guarantee convergence to ten significant places
was found to be approximately:

t = largest integef”in £2.5 + 3.75|DA—QA/M (B11)

max}’
The values of the cut-off points for the two schemes in Eq. B8
and Bll can be stored as an array indexed by Bnax SO that only
a negligible amount of time is used to determine which method

to use.

The accuracy with which the functions ﬂlare calculated

determines the accuracy of the final result since the remain-

ing factors in Eq. 129 can all be calculated without any loss
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of figures. For a particular problem, the criteria in Egs.
B8 and Bll can be adjusted to yield optimal balance between

speed and accuracy.
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CHAPTER III. ATOMIC ORBITAL COULOMB INTEGRALS
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INTRODUCTION

The accurate and efficient numerical evaluation of
electron repulsion integrals is a necessary and essential
step in molecular calculations. Among them, the one-center
integrals, and the two-center Coulomb integrals are the
largest in magnitude. The latter moreover, have long-range
character and cannot be neglected even for large iﬁternuclear
distances.

Recently, O-Ohata and Ruedenberg (102) observed that a
Coulomb integral, C, is related to a corresponding overlap
'integral, S, by Poisson's equation AC=- 478, and that methods
for evaluating Coulomb integrals can therefore be obtained
from appropriate overlap integral representations with the
help of the potential integral C = de S/r. Using their own
results for overlap integrals (103), they furthermore derived
certain expressions for Coulomb integrals (102). It has been
found that these expressions, although useful in various
respects, still contain some cumbersome parts and numerical
instabilities, but that these shortcomings can be eliminated
if, instead, one inserts in the potential integral the new
overlap formulation given in the preceding chapter. The
results, which are given below, furnish an efficient procedure
involving a finite triple sum over powers, two special func-

tions and constants.
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In this scheme, no advantage is being taken of.those‘
economies which result from an explicit use of the charge
distribution concept (110,111,104) but as a compensation,
all manipulations involving the four quantum-number doubles,

fm. can be embedded in the constants which can be calculated

’
once and for all. Thereafter they can be stored permanently
for use in the evaluation of specific Coulomb integrals. In
contrast to other procedures advanced for these integrals
(105,112), the expressions given here gain in accuracy or
can be computed to the same accuracy in less time when the

orbital exponents of the atomic orbitals on one center

approach those on the other center.
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DEFINITIONS

Let a real, normalized, Slater-type atomic orbital on

nucleus A, as a function of particle i, be denoted by

- -
(Angmt, i) = (2;)“*1/2[(zn):]'1/2r§;1 e .1ym(9Ai¢Ai). (143)

Then the Coulomb integral is defined as
C = [Ang2ymiz Angeomor, | BngggmgrgBnyg mz |

favy dez(AnISL 1M157 5 1) (AnzsL oL 95 1)

]

-1

The real spherical harmonics, gzm, are defined by

ygm(%) = ?JLmI (cos ©)[(1 + Gm,o)w]-l/f cos m¢$, m>0
N
‘;

=6zlml(cos G)ﬂ-l/z sin{m|¢, m<0 (145)

where(?slzml are the normalized associated Legendre functions,
The coordinate system used here is the same as in the pre-
ceding chapter and R is the internuclear distance.

The Coulomb integral, Eq. 144,will be evaluated with the

help of the Poisson equation (102),

2

V% C = =478 (146)

where

S = del(Anlzlmlcl, 1)(Anzzzmzcz,l)(Bn3£3m3c3,1)(Bn424m4;4,1)

(147)
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and the differentiations in V2 refer to the components of the
interatomic distance.

By-virtue of the discussion .in (102, seétion 5), the over-
lap integral, 8, just introduced can be related to the
overlap integrals defined in Eg. 106 in the preceding chapter

by the identity

2,9 m,m
_ ABA'B
S =z P Sn o -

(z R, CTgR) (148)
QARB mAmB A'B

where the symbol P is used to abbreviate the expression:

' 1/2
P = (20,+1) p(n 2.0., D20 o) :
A 1¥151s Boloba 2AmA(zlmlzzm2)

1/2 :
(22 ,+1) P(N,20la0, N0 ,0,) 4
B 3%3°37 "4%4%4 QBmB(£3m314m4). (149)

In Egs. 148 and 149, the following definitions are used:

n, =n; + n2 -1 nB = n3 + n4 -1 | (150)
Cp = %1 + Cg tg = %g +t oy (151)
(00,0, Dok ozo)=[2(5+D (1 o+1) (20,+20.-2) 1/7(20,) 1 (2n,) 1112
pPinyli%y, Dglolg f 2 pteng=2) . 1/ 4ng) -
n,+1/2 n.+1/2 n.+n,. =-1/2
1 2 1772
Ty Lo /(gy+e ) . (152)

The summation over £, is limited by

A
|21729]<2p<R1+09s L3+Lg L, = even (153)

and the summation over m, is restricted to the two values,

My and my_, given by

m,, =sign (m;) sign (m,) | (]mll + Imzl) | (154)
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where

sign (x) = x/| x| and sign (0) = +1. - (155)

The remaining quantities are:

' m1+m2
q - - 1/2, -
Bamy % mllzmz) €+(m1,m2)( 1) 1+ ao,mlmzl /2
L2 8 L %
L 12 A)( 2 | IAI | ) (156)
000 |m1| |m2|—( my {+lmyl) -
Maxf |m, |, |m,|d L2
1l 1M2lT[146 I
q’LAmA_(SLl“l bgmg)=edmy,my) (-1) - i Rl
) L
(’Ll ’LzlA)[ 1 2 A ) (157
000 -lmll ‘Imzl (myl-Im,l)
where the symbol, 21 22 23 is the Wigner 3j coefficient
ml m2 m3

(113 and 103, Egs. 3.19 to 3.22) and €+ and €_ depend upon
the signs of the product, (mlmz), and the sum, (m1+m2),
according to Figure 1. The parameters RB and my are similarly

L
related to £3m3 4 and m, .

(mym,) (m;+m,) €, €_
+ + 1 1
+ - -1 |
- + 1 -

- - 1
- 0 1
0 ,0,~ 1 0

Figure 1. Values for Epsilons
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DERIVATION

Integration of Poisson Equation
The integration of Eq. 146 is discussed in (102, section
1.4) and its application to the present case leads to:

/N LYje, & L
C=47 = £ pxr | A'B A B

QARB mAmB IM mA nt O WM -M 0

R bp oM ]
. frimt L., arr@gy) 12 g A BT (RE 4, RMzp)
DA
+ RE jR dR'(R*) L+l snA’LB (R'I;A,R'CB)-}, (158)
A"B |
£p b }
where Sn is the overlap integral defined in Eq. 129 of

A
the preceding chapter. The summation over L is limited by

|2 A-QBlf_LiZA+2.B, S5+ g+l = even (159)
and the summation over M is restricted to
~min §2,, szB}_<_ M<+min {zA,szB-}. (160)
Introduction of Auxiliary Functions
The expression enclosed in braces in Eq. 158 can be
transformed as follows:

1 %, 2. M
K = {...3=R?[ Jo at tit2 sn:::; (toy,tog)

dt t

.5w L1 gARBM
+ Sn
1 A"B

(toy,teg)], (161)

with
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oy = Ry. (162)

Substitution of Eq. 129 from the precedihg chapter into

Eq. 161 yields

o, AT'B p ot u+L+é
= 1 -
K R‘P p§6 (P, pB) [IO dt t fu(toA,tDB)gu(tpA,tOB)
@ p=1+1 t
+.Il dt t fu(.pA?th)g”(tpA,tDB)] (163)

where P! is an abbreviation for

n,+1/2 nB+1/2
Pt = (2pA/pA +pB) (ZpB/pA + pB) . (164)

The functions gu and fu were defined in Egqs. 130 and 131 of
the preceding ghapter, respectively. The function fu was
discussed further in Appendix B of that chapter.

We substitute the definition of g, into Eq. 163 and

define the auxiliary functions:

1
_ n
Gn,u(x,y) = JO dt t fu(tx, ty) (165)
N i
B, G50 =j1 at " £, (tx, ty). (166)

Thus we obtain for K the expression

n +nb v

a 2
2
K=R“P* C ~p )H v
40 (pA pB) \)=§ (DA+DB) Auv(nAnBlASLBM)
1
'[Gp+\)+L+2,u(pA’pB) + Hp-;.\)-]_,_,.]_’p(pA,pB)] (167)
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where the limits, v; and v,, and the constants Auv are defined
by Eqs. 132, 133 and 134, respectively in the preceding
chapter.
Substition of this expression into Eq. 158 yields
R, R
c = am?' = > Pz:(AB L)

QAQB mAmB LM mA —mB 0

La & L
A "B i R\
. Z (pp~pp)" Z (pagroy) A  (n,n-2,8 M)
{M _u O)u A"f8” A% Auvttatstatet e

‘[G (168)

u+v+L+2,u(pA’pB) + Hﬁ+v-L+l,u(pA’pB)]' '

Rearrangement of Summations

Finally we rearrange Eq. 168 by interchanging
summations as follows:
z z z L Z T =~ T I r =z = z z
A RB my, mp L M p v p v L m, mg QA i M
(169)

and by making the corresponding changes in summation limits.

Thereby we arrive at the end result

Dpthg " Na+ig N Lmax
C=2%2 L (pA—pB) z (pA+pB) = Du\)L
k=0 Y“Vmin =Lyin

'LGl.l+\)+L+2,i1(pA’pB) + Hl-l-!-\)"L'f'l,u(pA,pB)] (170)

with the limits and restrictions

Voin = Max [ve, u=(Ry405000+0,), [ 2125 (Lq+24+0),
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. 123-g4|-(£1+22+u)]

or o= (9] if ggragragetn is [S997]

L Maxf0, p=v, |2 =2, |-(agt2y), |3=2, - (4 +25)3

min
Loy = Min {zl+22+23+z4, p+vd

L + %1+£2 +23+£4;= even.

The coefficient Z is given by

Z = Z(RgyTotgynynongn,)

n.+1/2 4 n,+n_+1
U lemp 2z o VB

i=1 (171)

-1 4
= R I {(201)
Ci=l

The constants D _ are given by

kvL

y _ - 2
Dy ur(Pati™y #ohas Dplamylymy) = Qnytng=v)t/ (“)

jLA;max
6m m Ra q (4.m . m,)
A™B  g,=9 2,,my 1M1 202

QB, max '
)
Myt E Yoy, my (P33 %™
B Il’B,min -
) L
A '
’WB!(m ~-m 0)

mpMg A=A, min

L (2eaD ()t (w112

(285+ 1) [ (tgem) ! (ggmm) 1]/ 2

M
max

o [(2-8y o) /A1 +M) (2 =) ! (apM) ! (a1 2]

fp '3 L '
M -M O Buv(pAnBaAlBM) ' A (172)
where the constants Buuare defined in Eq. 135 of the preceding

chapter and the following further definitions have been

1/2

introduced:
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Q = _: [t (2s,+1)1/3)
i=1
N |
zA,min = Maxim, |£1—£2[, l£3'Z4I‘L,LF(E3+Z4)}
Ly max = Mintly+ly, Ltlg+iyd
g, min = Maxim, |25-2,1, [1-£]4
ZB,max N Min{£3+£4, Lfﬂ%
Mooy = Min £2,,0-,0 4n ~vi

A = Min{u+v+EA+EB, u+nA+nB}+1-

The indices BA and gB are subject to the restrictions:

Zl+£2+£A = even and £3+E4+£B = even,

Case of Equal Orbital Exponents

For the special case of Py = pgs ONE finds that in

Eq. 170 the only surviving term of the summation over p is

p = 0 and therefore,
fptPp 5 v Lmax
C=2z T ot B LBy + Ay g (P00, (173)
min min

where (104, Eqs. III.35 and III.34)
(1

E(x) =] at t" e Xt =6 (x,%) (174)
n J 0 & n’l.l.
(@ n -xt
A (%) =“ . dt t e == Hn’p(x,x). (175)
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DISCUSSION

The Constants DuvL

The constants Dva are invariant when (4;m,) is permuted
with (zzmz) and/or when (ﬂsms) is permuted with (£4m4).
Moreover, from Eq. 136 of the preceding chapter, it follows
that
= (1M
Dyvp(nafymyboigs Dplamalymy) = (=17 D, (npfomaf m,,
nAzlmlzzmz), (176) -

whence

DuvL(nzlmlzzmz, nﬂlmlzzmz) = 0, for.u = odd. (177)
The summation over p in Eq. 170 can therefore be restricted

to even values if the quantum numbers, nBz3m3£4m4, are equal

to the quantum numbers, nAzlmlzzmz, respectively.
Index Limits

In order te evaluate a particular integral, one requires
a table of an functions and a table of Hnu functions. 1In

both, the index p is limited by the inequality
0 <p < nying, (178)

while the limits on the index n differ for the two tables
and are functions of p. For Ggu, the index g ranges from

to where

gmin gmax

_}2a+2 when 0L p
gmin

2u+2 when a< p (179)

in IA

n. .+
A+
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Q
I

Max £0, [2y-8ol=Clg+y), [hg=ty|-Chy+05)3

Brax = MHDg+Np+ly+ 0ot Lot l,+2. (180)

For H_ , the index h ranges from hm. to h

hp in max

where

h in = {1 when Y DLyt hgt gty
min - =
2~2( 0y +bot byt £y )+1 When fo+ Lot fotfy<u<n,+np (181)

hmax = u+nA+nB+141. (182)

Properties of Auxiliary Functions .

The auxiliary functions Gnu and an were defined in
Eqs. 165 and 166. They are related to the functions,
previously defined by O-Ohata and Ruedenberg (102, Egs. 2.13

Y v .
and 2.12), GaB and Haﬁ‘

I

(2/x+y) G271 [Lxey), (-y)/(x+y)]  (183)

o
n,p %¥) m

Hn,u(x’Y) = n'! (2/x+y)n+l Hsu[%(x+y), (x~y)/(x+y)].(184)

The functions Gn and Hn M

satisfy very similar identities
’ .

3

and, in the following equations the generic symbol, F is

np’?
used to denote either one. By substituting into Eqs. 165 and
166 the hypergeometric series for fu given in Eqs. Bl and B2

of the preceding chapter, one finds the series representations,

e}
Fp o) = 2 [a G100/ (ke ) 1] Geoy) ™ U G (185)
0
By (60 = T [2(u,k)/(2u+ke1) 1] (-5 U (5) - (186)
F )= = a0/ (e2e) ] eoy/DE U (xoy/2)
n,”(x,y = a(p, 2p+2k+1) 1 | (x-y ny ok (X-¥/2).

0 (187)

e
Il
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Here, v
a(p,k) = (2u+1)! (p+k) !/ (ptk?),
and the symbol, U , denotes the function E if fnu = Gnu’ and
the function An if Fnu = Hnu' These were defined in Eqgs.
174 and 175.

By substituting into Eqs. 165 and 166 the integral
representation of fp, obtained by combining Eqs. 124 and 130
of the preceding chapter, one finds the integral representa-

tion

Fp,u (%) = [(2p+1) /2% (%f)_

1 2.1 1 1 |
. . dn (1- n“) UnLE(X+y) + (x-y)n] (188)

where the Un are the same as before.
The most useful recursion relation for these functions

is obtained by inserting in Egs. 165 and 166 for fll the rela-

tion in Eq. B5 of the preceding chapter. This yields

(x,y) + [(x-y)%/4(2043) (2u+5) |F

Fn’“(x,y) =F 2(x,y).

(189)

n,p+l n+2, 1+

This recurence relation involves only positive terms since

both an and Hnu are always positive.

Evaluation of the Functions Gnu and an

The functions needed are obtained by use of the recursion
relation in Eq. 189 which involves only the addition of
positive terms so that no subtractive losses of accuracy

occur. Only certain rows of each table are needed as starting
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functions for this recursive procedure.

As én example, diagfams of the required G and H‘fundtion
-tables are given in Figure 2 for the evaluation of the .
1ntegra1 [A2p, Als | ‘B2p, B2s]. The starting functhns‘are
denoted by the symbol s and the elements obtained by
recursion are denoted by r.

The stérting functipns are obtained from the ihtegral
representatiqn of Eq. 188 by a Gaussian numerical intégratibn
(108, p. 887, Eq. 25.4.29). Thus, one obtains the formula

' X 1 1
F u(x,y)- Zl mu { Un[§(x+y) +-§(xey)ni]‘(190)

where'n:i is the i-th zero of the Legendre functions,,PN(n)t

and ‘

o, y=L(e1)/220) (2] (on By (191)
with w, being the weights given by | |

W, = 2/(1m )2 [pret 012 N (192)

To obtain an accuray of 10~6 atomic units, the order, N, of
the numerical integration was found to be dependent on the

arguments Pa and PR by the approximate relationéhip
N=2 x the largest integer in {5 + 7.5 [(py- pB)/(pA+pB)]}(193) s
Evaluation of the Functions A and E

The functions, An, are obtained in all cases using the
recursion relation:

A0 = (AL (0 4 e ¥)/x - (194)
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—
O}l 23 45 6789101121314
0| s S rr r rror
lI | s s r rr rr
2 s s r rrr
7
‘3 s s r rr
4 | S S § S
5 s § S
B (I
Ol 23 45 6 7 8 9101l
0] r r r rrr
| r r rr r r v
12 S S r r r v r v
M
43 s s rrrrr
9 S § § § S S
5 $ § S § S

Figure 2. Auxiliary functions needed to evaluate the integral
[A2p Als I B2p B2s]: G functions in upper diagram,
H functions in lower diagram
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from the starting function

Ao(x) = e %/x. (195)

The functions En can be obtained with an accuracy of
ten significantbfigures, using the recursion relation
= -X '
E(x)=(@E ;&) -e ")/x (196)
with the starting function
E,(x) = (1-e" %) /x, (197)
whenever the following relation is satisfied:

x > (+0.072 + 0.012 nmax) D ax (198)

Here L is the maximum index value required. When this

relation is not satisfied, Eq. 196 loses too many significant
figures and one must use the recursion relation in the reverse
direction in which no subtractions occur. In this case, one

needs En as a starting function. The most rapid scheme for
max '
obtaining it was found to be the Taylor Series expansion,

0
ByG0) = [(-0%/1] B, (), (199)

if function values En(y) were stored at sufficiently close
intervals of y. This table of fixed values was computed by

the infinite series,

o]

nt eV % vk/(n+k+1)3. (200)
k=0

l}

E (V)
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The number of terms needed in the series, Eq. 199, depends on
the size of the inter&al of grid points v stored. With an’
interval of 0.33 units, no more than six terms are needed

in the Taylor Series in order to converge to ten significant

places.
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COMPUTATION TIMES

The computer times quoted here are for FORTRAN programs
written with double precision arithmetic for use on an IBM
360/50 computer. The times include the calculation of all
auxiliary functions required, retrieval and use of the DuVL
coﬁstants from permanent disc storage, summation of the series
in Eq. 170, as well as writing out the matrix of integrals
onto disc storage.

The actual time per single integral is a function of the
quantum numbers, since the latter determine the size of the G
and H tables required as well as the number of terms in
the series in Eq. 170. A significant fraction of the time is
spent on the numerical integrations of Eq. 190 for the start-
ing functions and the number of points required depends on
the values of the orbital exponents according to Eq. 193.
Quoted here 1s the time needed for the relatively unfavorable
case requiring a 16 point numerical integration. Letting n
represent the average of the four principal quantum numbers,
n,, and letting f represent the average of the four angular
quantum numbers, zi, the time for a single non-zero integral
was found to be n(30 + 127) milliseconds.

After an initial calculation of all integrals occurring

over a basis set of functions on each center, subsequent

changes in the orbital exponents require recalculation of
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only part of the Coulomb matrix. .Provision for this is
incorporated into the computer program and results in a
substantial savings of time. For the initial calculaticn

of the matrix of 11,025 Coulomb integrals arising from the
basis set consisting of the functions 1ls, 2s, 2pc; 2pm, 2p},
3s, 3po, 3pw, 3pw, 3do, 3dw, 3dw, 3d6, 3dd6, on each center,
each function havihg a different ¢ value, five minutes are
needed. Changing one of the basis functions and recalculating
the new matrix of integrals, requires 45 seconds.

Whereas in some methods, serious difficulties arise
when the orbital exponents on the two centers approach each
other, the present procedure becomes more accurate as well as
faster in this case. For example, when allf 's are equal,
the aforementioned time of five minutes is reduced to 46
seconds while the aforementioned time of 45 seconds is

reduced to 26 seconds.
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