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CHAPTER I. SEPARATED PAIR WAVE FUNCTION, 

ELECTRON CORRELATION AND MOLECULAR 

PROPERTIES OF IMIDOGEN 



www.manaraa.com

One of the goals of quantum chemistry is the initio 

calculation of molecular properties. Such calculations would, 

for example, be of particular value for species arising as 

reaction intermediates, which are of interest to the experi

mental chemist but which are not accessible to him for 

detailed study because of their short life-times. To 

achieve this objective, practical methods of obtaining-

suitably accurate wave functions for molecules and a^oms 

must be developed. The recent self-consistent-field calcula

tions by Cade and Huo (1) on the diatomic hydrides are an 

encouraging sign that the execution of such projects is 

within reach today, at least for small molecular systems. 

At the same time however, these results, which are very close 

to the exact Hartree-Fock solution for these systems, give 

systematically poor values for the dissociation energies 

which characterize the simple dissociation reactions of the 

hydrides and thus, point out the need for calculations, 

beyond the Hartree-Fock approximation, that will take into 

account I lie effects of electronic correlation. One approach 

in this direction is the method of separated pairs intro

duced by Hurley, Lennard-Jones, and Pople (2), which gives 

wave functions that are particularly amenable to intuitive 

interpretation while allowing for correlation effects within 

electron pairs or "geminals" (3). 
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The attainment of accurate results from separated pair 

calculations on the beryllium atomic systems (4) has stim

ulated an interest in the possibility of using this scheme to 

obtain similarly accurate results for molecular systems. The 

series of four-, six- and eight-electron diatomic hydrides, 

LiH, BH and NH, offers a means of testing this hypothesis oh 

a set of increasingly more complicated molecules: LiH has two 

electrons forming a "K shell" geminal around the heavier nu

cleus and another two electrons forming a "bonding" geminal 

between the nuclei; BH has two additional electrons which 

form a "lone, pair" geminal around the heavier nucleus; and in 

addition to these geminals, NH has two more electrons forming 

a "triplet" geminal about the heavy nucleus. The first two 

systems are the subject of a Ph.D. thesis being prepared by 

E. Mehler at Iowa State University and the imidogen, NH, 

molecule is the subject of this chapter. 

Although the band spectra of the imidogen molecule had 

been observed in ammonia flames as early as 1893 by Eder (5) 

and in 1919 by Fowler and Gregory (6), the proper identifica

tion of these bands with NH did not come until the late 1920's 

(7-9). The imidogen molecule has been produced in the laborato

ry (10-26) by the thermal decomposition of hydrazoic acid 

NgH (10,11), by the uv photochemical decomposition of N^H (12), 

by passing an electrical discharge through N^H (13), by the 

photolysis of N^H (16-18), by decomposing hydrazine N^H^ (14, 

19,20), by the photochemical decomposition of ammonia (15,21), 
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and by photolysing isocyanic acid,HNCO (22,23). Imidogen has 

also been produced by shock wave studies of mixtures of 

nitrogen and hydrogen (24,25) and by the shock heating of 

ammonia (25,26). It has been proposed that NH exists on 

, Ni and Fe surfaces during the chemisorption of N^, Hg and 

NHg (27), on Fe catalysts during NHg synthesis (28), and 

on Pt catalysts during NH^ decomposition (29). 

Imidogen has been studied in homogeneous electric fields 

(30,31). A study of the Stark effect by optical methods has 

allowed the determination of dipole moments for the NH excited 

states but no observations on the ground state could be made 

(31). Electron impact studies have yielded values for the NH 

ionization potential (32) and thermodynamic considerations 

have yielded heats of formation and dissociation energies 

(33-35). Analyses of the spectra of NH have produced values 

for the spectroscopic constants: k^ (36,37), (37-39), 

(DgXg (39), Bg (9,38), dg (38) and (9,37,40). 

The chemistry of imidogen has been of interest in 

astrophysics since its spectral bands have been observed in 

the spectra of comets (41-44), in the solar spectrum (6,45), 

in the night sky afterglow (46), and in lightning (47). It 

has been suggested (48) that some of the colors on Jupiter 

may be due to condensed reactive species such as (NH)^ since 

the conditions in Jupiter's atmosphere resemble those used 

in the laboratory to trap NH radicals at low temperatures 

(10,11,14,16^18). Work on the oxidation of hydrazines in 
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liquid rocket fuel research has also stimulated an interest in 
; 

imidogen and its halogenated derivatives (49), The reactions 

of imidogen in organic chemistry have been recently reviewed 

(50) and a general review article on imidogen chemistry has 

appeared (49, also see 51). 

On the theoretical side, by interpreting the band spectra 

of diatomic molecules, and by correlating the electronic states 

of molecules with those of their isoelectronic united and 

separated atoms, Mulliken (52) predicted in 1932 the existence 

of six electronic states of NH which were all verified experi

mentally by 1945 (51). Later, in 1934, Lennard-Jones studied 

the correlation between the electronic states of NH with the 

isoelectronic states of oxygen and CHg using the molecular 

orbital method (53). 

3 — 
The earliest calculations on the NH ground state, E , 

were performed by Stehn in 1937 (54) and King in 1938 (55); 

these involved empirical methods for evaluating integrals. 

Further semi-empirical investigations were carried out by 

Moffitt in 1950 (56), by Companion and Ellison in 1960 (57) 

and by Lippencott and Dayhoff in 1960 (58). 

The first non-empirical, ̂  initio calculation on the 

state of imidogen was performed by Higuchi in 1956 (59) 

using a basis set of Hartree-Fock atomic orbitals with the 

linear combination of atomic orbitals - molecular orbital -i 

self consistent field (LCAO-MO-SCF) method. Further use of 

the LCAO-MO-SCF method was made in 1958 by Krauss (60) and 
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Boyd (61) using minimal basis sets of Slater-type atomic 

orbitals (STAG). Also, in 1958, Krauss and Wehner (62) 

extended their LCAO-MO-SCF wave function by the inclusion of 

higher configurations and Hurley (63) used the valence bond 

method including higher configurations to perform calculations 

using minimal STAO's, Configuration interaction calculations 

using Gaussian-type functions were performed by Reeves in 

1963 (64) and by Reeves and Fletcher in 1965 (65). Calcula

tions using STAO's on one center only were performed in 1963 

by Bishop and Hoyland (66) and in 1965 by Lounsbury (67) and 

Joshi (68). 

The calculations of Cade and Huo in 1967 (1), using an 

extended set of STAO's to build an LCAO-MO-SCF wave function 

for imidogen, are the most accurate and extensive of all the 

previous works. The current investigation goes beyond these 

results by using the separated pair approximation to study the 

elTect ol including some electron correlation in the wave 

fune Lion. 

While explicit formulation of separated pairs in terms 

of natural orbitals for many-electron systems having a singlet 

spin state have been given repeatedly (2,4,69), the triplet 

spin case has been discussed only for two-electron systems 

(70,71). General expressions that are valid for any choice 

of spin state are therefore derived here for the many-electron 

separated pair wave function. The geminals are expanded in 
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terms of their natural orbitals and a variational procedure is 

developed for their determination. 

Within this framework, natural orbitals of the separated 
O 

pair wave function for the Z" ground state of the imidogen 

molecule are calculated, and in order to give a pictorial 

appreciation of their structures, contour maps have been 

drawn for them. Several physical properties are calculated, 

namely, the total energy, the dissociation energy, the 

equilibrium internuclear distance, the molecular potential 

energy curve, the spectroscopic constants, the molecular 

dipole and quadrupole moments, and various other one- and 

two-electron expectation values. Of greatest interest is 

the correlation energy recovered by the separated pair wave 

function and, for this reason, a detailed analysis of the 

correlation is given in terms of the geminals and the natural 

orbitals. This study reveals that the separated pair approxi

mation provides a suitable description of part of the electronic 

correlation in NH, but, on the other hand, is too restrictive 

to yield a complete description of all the various electronic 

correlations in this molecular system. Nevertheless, the 

analysis does shed light on the nature of the omitted part of 

the correlation and suggests directions for future 

improvements. 
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FORMULATION OF THEORY 

Geminals and Separated Pairs 

The quantum mechanical properties of a pair of electrons 

can be described (70,71) by a geminal, A, which is a function 

of the spin and space coordinates of two particles. 

Geminals are normalized to unity in the sense, 

/dx^ /dTgA (1,2) A* (1,2) = 1, (1) 

and are antisymmetric with respect to an interchange of the 

coordinations of the two electrons: 

A(l,2) = -A(2,l). (2) 

An expansion in terms of natural spin orbitals (NSO), 

can be used to express the functional form of a geminal so 

that 

A(l,2) = Cc.[^2.(l) ̂ 2i+1^2) - *2i+l(l) tgiCZ)]/ / (3) 

The natural orbitals are orthonormal functions, 

;dT, t„(i)+„•(!) - (4) 

and Iherofore normalization of a geminal gives the occupation 

coeJ Ticicnts, the property, 

C I c. I 2 = 1 .  (5) 
i 

The first order density matrix, -y , of a geminal thus takes 

the form, 



www.manaraa.com

9 

7(1 |1') = 2;dT2 A(l,2) A*(1*,2) 

In this investigation, geminals are chosen to be 

2 eigenfunctions of thé total spin angular momentum, S , and 

its z-component, S^, thus the two electrons in a geminal 

can form a singlet or a triplet spin state. In the first 

case, the natural spin orbitale can be taken as: 

*21 - +1 a 

*21+1 ° *1 P (7) 

Where the natural orbitale (NO), are spatial functions 

only. This gives the singlet geminal a symmetric space 

function: 

A(l,2) = EC.(1) *.(2) [a(l)p(2) - p(l)a(2)]/ ( 8 )  
i ^ ^ ^ 

To obtain a triplet spin state with = +1, the NSO can be 

expressed as: 

*21 - - x.a 

*21+1 - ?1 - ̂ 1°-

The functions x and y are again spatial functions only, but 

the geminal now has an antisymmetric space representation: 

A(l,2) = Z c.[x.(l)y^(2) - y.(l)x.(2)] a(l)a(2)/ (10) 

For the 8^ = -1 component of the triplet, the functions ct 

in Eq. 9 above would be replaced by P. The = 0 component 

of the triplet can be handled by defining the NSO's as follows 
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^4r 
= X a 

r 

4̂r+l = yj.P 

4̂r+2 
= 

4̂r+3 = yfO, (11) 

and by assuming the coefficients to be doubly degenerate, 

^2r " ̂Zr+l 

Lie = 2 Z|c |2 = 1. (12) 
il r 

Thereby, one obtains, 

Ad, 2) = 2 ['f'4r"''''4r+l<2> " *4r+l(l)f4r(2) 
r 

+*4r+2(l)̂ 4r+3(2) " '̂ 4r+3<l' t'4r+2(2)]/ 

I' 

.[u(l)P(2) + P(l)a(2)]/ /%: (13) 

Thus, for any of the four possible spin eigenstates, Eq. 3 

is applicable. This expression will therefore be used for 

the derivation of energy expressions. 

In a many electron system, each distinct pair of 

electrons can be handled by means of a distinct geminal. 

Hurley, Lennard-Jones, and Pople (2) have used this concept 

of separated pairs to approximate the total wave function. 

They furthermore introduced the constraint that geminals for 

different pairs be "strongly" orthogonal; 

/d A^(1,2) A*^(1,3) = 0 if jiA) (14) 

which implies the "weak" orthogonality property: 

;dTj /clTgA^d.a) A* (1,2) = 6^ (15) 



www.manaraa.com

11 

It has been shown (72,73), that strong orthogonality between 

two geminals,A ^ and A^, implies orthogonality between the 

N80*s, and , used in the expansion, Eq. 3, of the 

respective geminals: 

/dTi V - WlJ- (IS) 

The imposition of strong orthogonality between various 

geminals represents a loss of generality from an unrestricted 

pair formulation but it does reduce the problem of finding 

energy and other expectation value expressions to a 

tractable form (74). 

Total Many Electron Wave Function 

In the approximation just referred to, a quantum 

mechanical state of a 2n-electron system is described by a 

wave function, Y, which is expressed as an antisymmetrized 

product of strongly orthogonal geminals: 

T(l,2, ...,2n) =/Y[Ai(l,2) AgCS^*) . ..A^ (2n-l,2n)]. (17) 

Because of the antisymmetry of the geminals themselves, a 

partial antisymmetrizer, , is sufficient to achieve a 

totally antisymmetric wave function as required to fulfill the 

Pauli exclusion principle; 

A = [2"/(2n)!]l/2 E(-1)P P (18) 
P 

where the permutation operator, P, only permutes the coordin

ates of electrons between different geminals. 
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Iji a system with an odd number of electrons, 2n electrons 

are described by n geminals as above and the remaining electron 

is described by an orbital, Z, 

Z(l) = Zn+i gd) a(l) (19) 

which is orthogonal to each of the geminals: 

A (l,2) Z*(l) = 0 for all . (20) 

The total wave function in this case is given by, 

Y(l,2,...2n,2n+1) (1, 2) . . . A^(2n-l,2n) Z(2n+1)], (21) 

where 

= [2*/(2n+l)!]l/2 E(_i)P p (22) 
P 

and here the permutation operator, P, permutes the coordinates 

of electrons between the orbital and each of the geminals in 

addition to the intergeminal permutations as above. The 

constants multiplying the summation signs in Eqs. 18 and 22, 

insure that the total wave functions, Eqs, 17 and 21, re

spectively, be normalized to unity. 

It is convenient to adopt the following convention for 

the case ol 2n+l electrons: 

"n+i.i = ®i,0 Vl.k - ̂  \.0- (23) 

This allows the correct result to obtain from expressions 

involving summations over the geminal indices. 

For an N-electron wave function of the above type, the 

second-order density matrix, I', can be easily calculated and 

easily expressed in terms of natural spin geminals (NSG). 

This expansion of the second-order density matrix is as 
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follows : 

I'd 2|1'2') = N(N-l) /I ;dT3...dTj^ Y(1,2,...,N) Y*(1',2',...,N) 

= 2 E A (1,2) A*(l',20 

(24) 

The summation over p. runs over the number of geminals involved 

whereas the upper limit of the index, u, will be n or n+1 for 

the even or odd electron case respectively. For "O = n+1, 

the summation over j will reduce to the one term, j=0, due 

to Eq, 23. The first n NSG's are the geminals occurring in 

Eqs. 17 and 21. The remaining NSG are defined (69) as follows; 

- W 2̂- (25) 

The first order density matrix, 7, of the total wave 

function is given by 

y(l|l') = N/l/dT^.-.dTj^ Y(1,2,...,N)Y*(1',2,...,N) 

- (1/N-l) /dTg 1(1 2 I 1'2) 

= E 7dl 1' ) + Z(1)Z*(1') 
M 

" |ii' [^^,2i(l)^^,2i(l')+^^,2i+l(l)^^,2i+l 
M1 

(26) 

Thus the NSO's of the geminals and the lone orbital form the 

NSO's of the total wave function. 
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Separated Pair Energy Expression 

The energy, E, of a many electron system is given as the 

expectation value, 

E = /dx ^ H¥* / /dT ^ (27) 

where H is the non-relativistic Hamiltonian operator in the 

Born-Oppenheiraer approximation (75) expressed in atomic 

units (76): 

H = L + E h(i) + E r.."l (28) 
aO i i<j 

where 

V - (29) 

h(i)= T. + L (30) 

= -1/2 (31) 

âl - -Val''- <-̂ 2) 

The indices, i and j, range over the number of electrons 

while the indices, a and p, range over the number of nuclei. 

The symbol, Z^, is the charge on the a nucleus, is the 

distance between nuclear centers, r^^ is the distance from 

electron i to nucleus a, and r.. is the distance between 
' iJ 

electrons i and j. Using the expression for the first and 

second-order density matrices given above, the total energy 

can, be written as a sum over nuclear repulsion, intrageminal 

and intergeminal contributions: 

E = Z V a + E E(fi) + Z I(|i,u) (33) 
ctO y. {i<u 

where 
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E(ii) = L c . c * E(|ii,jij), (34) 
PJ 

I(p,u) = s |c^.|^ |c^j|2 I(jii,vj), (35) 

E(iJtl,(ij) = ô_[(|ji,2i|hliJL,2i) + (fi, 2i+ll h] n, 2i+l) ] 

+ [ix,2i ii,2j]|a,2j+l |i, 2i+i]-[|x, 2i+l n, 2j ] |i, 2j+l H,2i], 
(36) 

I(fii, 'o j)  = [ |x,  21 |i,2i I  u,2ju,2j] + [^,2i u,2i|u,2j+l u,2j+l] 

+ [(1,21+1 |X, 21+ll u, 2j t), 2j ] + [(!, 21+1 M-, 2i+ll 2j+iu , 2j+l] 

-[fi,21 u,2j||i,21 u,2j]-[|i,21 u,2j + l|n,21 u,2j+l] 

-[n,2i+l D, 2j I [i, 21+1 •D,2j]-[|i,21+l D, 2j+l||i, 21+1 

ù,2j+l] (37) 

and where the following conventions have been used: 

(K,k|h|X,4) = /dx^ j^(l) h(l) 4/^*^(1) (38) 

[K,k X,4|p,m v,n] = /dT^/dTgip^ *(l)T|,^^^(l)ri2-4^ ,n(2)4/J ^(2)' 

(39) 

The expression In Eqs. 36 and 37 can be simplified once the 

spin state of each geminal has been specified because the 

particular expansions In Eqs. 7 and 9 can then be inserted 

and the integration over the spin variables carried out. Here 

again, for the case of an odd number of electrons, the 

conventions adopted in Eq. 23 are used. 

The quantities, E(ji), in Eq. 33 are derived from the 

presence of the first n natural spin geminals, A , in the 

expansion of the second-order density matrix given in Eq. 24. 

The terms I((jl,u) In Eq. 33 result from the remaining natural 

spin geminals, A . occurring in the second-order density 

matrix. Thus, the energies, E(|i), arise when two electrons 
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occupy the same geminal and the contributions, I(|i,'u), arise 

when the electrons occupy different geminals. This justifies 

using the names, "intrageminal" and "intergeminal" to describe 

these energy terms. Partitioning the energy into these intra

geminal and intergeminal contributions has been shown to be 

useful for a study of the correlation energy effects in the 

beryllium atom (4) and shall be further developed here in a 

later section. 

For a real wave function, the NO's used for the symmetric 

spatial expansion of the singlet and for the antisymmetric 

spatial expansion of the triplet geminals can, without loss 

of generality, be chosen to be real. This choice of NO's 

forces the occupation coefficients, c ., to be real (70), 
r ̂ 

The complex conjugation notation will therefore be dropped 

hereafter. 

The spatial natural orbitals which have been given the 

symbols, (l),x,y,z, will hereafter be referred to by the generic 

symbol w. These functions are obtained as linear combinations 

of Slater-type atomic orbitals (AO), 

where the normalized, real spherical harmonics are given by. 

Parametrization of the Natural Orbitals 

n+1/2 (40) 

(cos 0) ̂  ((j)) (41) 
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/" ^ 1 / p 
, ' ir~ COS m<j) m>0 

m=0 

sin Imjcj) m<0 (42) 

and are the normalized associated Legendre functions. 

The subscript a implies that the coordinate variable is de

fined with respect to an axial system centered at the nucleus 

a. This basis set is non-orthogonal with the overlap matrix, 

^ij ̂  Xi Xj. (43) 

The natural orbitals are written as 

*k - C Xi °lk (44) 

where 

Dlk - ̂  Tjk • (45) 

— 1/9 
The matrix S performs a symmetric orthogonalization (77,78) 

on the basis set after which the orthogonal transformation 

matrix, T, generates the natural orbitals. The orthogonaliz-

— ] /2 
ing matrix, S~ , is obtained by letting the eigenvectors of 

S form the columns of the orthogonal matrix U, constructing 

—  1 / 2  the diagonal matrix A from the positive inverse square 

roots ol the corresponding eigenvalues, 

= + X."1/2 5 (46) 
ij 1 iJ 

and then forming 

g-l/B = u (47) 
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For a given set of M basis orbitals, having the 

quantum numbers, (n^ m^), and the orbital exponents, C 

the degrees of freedom of the NO*s are furnished by the M orbital 

exponents, ç and the M(M-l)/2 degrees of freedom of the 

orthogonal matrix T. For the latter, a parametrization is 

2 used (79) which expresses the M elements of T in terras of 

M(M-l)/2 angles, (p=l...M, q=l...p), by means of the 

recursive procedure summarized below. 

The orthogonal matrix T of degree M is obtained as the 

M-th step in a recursive sequence of orthogonal matrices, Î 
(m) 

i.e. T=T _rr(m) The m-th matrix, T 
(m) 

is obtained from the 

(m-l)-st matrix by the following set of recursive steps: 

rp (m) = f (m) 
jk jk •Vjm - Sjk/*) si" 7 

-Vjm + -/jm (48) 

where, for fixed k, one advances from j=l to j=m using the 

definitions; 

(m) ^ p(m-l) 

(m) 
Ik 

7. 

T 

mm 

(1) 

=  T t / 2  

1.  

\ 
0 

(49) 

It should be noted that the matrix g uniquely expresses 

the NO'S in terms of the AO's regardless of the choice of 
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ôrthogonalization procedure employed. For any particular 

basis-set orthogonalization-transformation, Y, there would be 

a corresponding orthogonal matrix, W, such that the product 

V'W would still yield the same matrix D. Once Y is chosen 

however, the matrix W, and therefore its parametrization in 

terras of y's would be sufficient to uniquely determine the 

NO'S. 

Variational Procedure 

Variations of the energy with respect to the occupation 

coefficients with the constraint that Eq. 5 remains valid 

leads to the set of coupled eigenvalue equations for each 

geminal: 

s H..{^) - (50) 

where 

= E(jii,{ij) + Ô E E|c |2 I(pi,uk). (51) 
"-J k 

For the ground state, the geminal energies,e are taken to 

be the lowest eigenvalues of the matrices, H((x), and the 

occupation coefficients are the components of the correspond

ing eigenvectors of H(ji). Since the solution of these equa

tions for a given geminal depends on the occupation 

coefficients of the other geminals, the final set of geminal 

energies and coefficients are obtained through an iterative 

process. The geminal energies are also given by 
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= E(|J.) + L (52) 

and in turn the total energy can be expressed as 

(53) 

Variations of the energy with respect to the functional 

form of the NO's themselves with the constraint that they 

remain an orthonormal set of functions, leads to a set of 

coupled integrodifferential equations for the orbitals. These 

equations have been given previously (69,4), but as yet, have 

not been cast into an easily usable form because of the presence 

of off-diagonal Lagrangian multipliers. An alternative 

scheme is employed here for obtaining the NO's, namely to 

use the variational principle to determine optimal values for 

each of the parameters which enter the NO's discussed above. 

The two sets of parameters, the ç's and 7's, have values 

which are determined by a direct minimization of the total 

energy using a variational procedure known as conjugate dir

ections (80). _Solving the set of coupled eigenvalue equations 

constitutes a trivial phase of the calculation of the separat

ed pair wave function and therefore these equations are 

solved itoratively for each trial choice of the r, and 7 

parameters and Eq. 53 used to compute the total energy. 

Determination of the wave function is thus tantamount to 

finding an optimal set of ç and 7 values. The final wave 

function is a result of several stages of the variational 

procedure. Each stage corresponds to using a particular 
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number of atomic orbitale as basis functions. For the first 

stage, a minimal basis set is employed and from this point on, 

the basis set is augmented by the systematic addition of new 

atomic orbitals. 

In order to insure that the wave function at the 

beginning of each successive stage will be at least as good, 

in terms of the energy criterion, as the final result of the 

previous step, a procedure for adding orbitals has been 

developed. Suppose that the M-1 old NO's have the expansion, 

M-1 
\ °ki (old) . (54) 

Upon addition of a new basis orbital, M natural orbitals can 

be formed. These are defined by keeping the old NO's intact 

and Schmidt-orthogonalizing the M-th NO to them (78). The 

set of new NO'S is then given by the MxM transformation matrix, 

D(new); 

DLj(new) = (old) for i,j^M 

0 

b^B 

B 

for i=M, j^M 

for It^M, j=M 

for i,j=M (55) 

where 

b. 1 

B 

M— 1 
Z: D (old) a 
k=l 

[' - % ->1 

-1/2 
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M-1 
- - .fj SMJ "jk (old) (56) 

and is the overlap integral between and Xj• 

In order to continue the minimization process using the 

parametrization of Eqs. 48 and 49, it is further necessary 

to decompose D according to Eq. 45. Since the matrix S(new) 

is known, and D(new) has just been determined, the orthogonal 

matrix T is obtained as 

T(new) = g+l/2^^2w).D(new) (57) 

where 

g"*"l/2(new) = U(new) • 4^^'^2(new) ••U^(new) (58) 

— 1/9 
which is analogous to Eq. 47 for S , except that here use 

4-1/2 
is made of the diagonal matrix, \ , formed from the positive 

square roots of the overlap eigenvalues. Finally, the angles 

7 corresponding to T(new) are readily found by minimizing 
PQ. 

the deviation, 

E l T.J(new) - T.^(7^^)| (59) 

where ^^^(7^^) represents the functional dependence of T upon 

the angles 7^^ described in connection with Eqs, 48 and 49. 

This minimization process is also carried out by the method 

of conjugate directions (80). 

Computer Considerations 

The execution of this project requires a heavy use of the 

electronic digital computer. A fully automatic computer pro

gram carries out the parameter searches according to the 
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directions set forth by the minimization scheme employed until 

optimal values of the parameters are found. This implies the 

evaluation and the continued re-evaluation of the energy ex

pression. The steps in this process will be briefly described. 

For a given trial set of the 5 parameters, a set of 

integrals is required. The electron repulsion integrals 

needed are as follows: the one-center electron repulsion 

integrals, [NN|NN] and [HH|HH], the two-center Coulomb 

integrals (81), [NN|HH], the two-center exchange integrals 

(82), [NH|NH], and the two-center hybrid integrals (83), 

[NN|NH] and [HH|HN]. The N and H used in the integral 

designations here represent atomic orbitals, centered at 

the N or H nucleus respectively. In addition the one- and 

two-center, one electron integrals (84) required are the 

overlap integrals, Eq. 43, the kinetic energy integrals, 

Eq. 31, and the nuclear attraction integrals, Eq. 32. From 

the overlap integrals, the matrix S is formed and at 

the same time the eigenvalues of S are examined in order to 

determine the extent to which the basis set might have 

become linearly dependent (85,86). The complete set of 

integrals is saved on the computer's disc storage and reused 

if possible. Only in the cases where the minimization 

program has changed one or more ç values, does this set of 

integrals need to be recomputed. All of these integrals 

are computed to an accuracy of at least 10 ^ atomic units. 
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The matrix, T, is formed from the set of current 7 values 

via Eqs. 48 and 49 and this is combined with the current S 

to form the matrix D, Eq. 45. This matrix is then used to 

transform the integrals over atomic orbitals into integrals 

over the natural orbitals, Eqs. 36 and 37. 

Once the integrals over NO's are available the coupled 

eigenvalue equations are solved iteratively until the com

ponents of the eigenvectors (the occupation coefficients) 

have converged to 10~® atomic units. The energy is finally 

obtained from Eq. 53. 

Forming the matrix T from the 7's, forming the matrix 

D, solving the eigenvalue equations, and obtaining the energy 

are phases of the calculation which require very little 

computer time. Computing the integrals over the atomic 

orbitals takes a substantial amount of computer time, but as 

mentioned above, they are recomputed only if variations 

within the set of M orbital exponents are encountered. The 

transformation from atomic orbital to natural orbital integrals 

is also time consuming; this phase however must be performed 

for each variation of ç or 7 values. Since there are about 

M(M-l)/2 different 7 parameters, the transformation to NO 

integrals represents the heaviest burden in terms of computer 

time required. 

The addition of new orbitals to the basis set constitutes 

a very important phase of the calculations. The computer time 

required for setting up a new orbital basis by the procedure 
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described in Eqs. 54-59, is however minor. Moreover, this 

calculation is executed only once for any given atomic 

orbital basis set. 
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WAVE FUNCTION, ENERGY, CORRELATION 

Orbitals for the Imidogen Molecule 

A wave function for a diatomic molecule should be an 

eigenfunction of the z-component of the orbital angular 

momentum, L^. The spectroscopic designation of the electronic 

3 _ ground state of the imidogen molecule is E which means 

that the electrons form an overall triplet spin state, that 

the eigenvalue of is zero and that the wave function is 

antisymmetric with respect to reflection in any plane contain

ing the molecular axis. Four geminals are used to describe 

the eight electrons in the molecule and for descriptive 

purposes later, they are given the labels, K Shell, Lone Pair, 

Bonding, and Triplet. The first three of these are each 

built out of NSO's in such a way that they have the symmetry 

Thus, they are singlets, have L^=0, are symmetric with 

respect to reflection in any plane containing- the molecular 

axis and are expanded in NSO's according to Eq. 8. The 

remaining geminal will be a triplet with the symmetry, , 

and thus Eq, 10 will represent its NSO expansion. Since the 

quantities of interest in this work are spin-independent, the 

particular choice made for the z-component of the triplet 

spin state is immaterial; however, S^=+l has been used. 

The product of these four geminals will then have the 

correct symmetry for the NH molecule. 
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Two coordinate systems are defined: one with its origin 

at the nitrogen nucleus, the other having its origin at the 

hydrogen nucleus. The two z-axes point toward each other 

along the molecular axis and the two x- and y-axes are 

parallel. A set of atomic orbitals is chosen on each of these 

centers and they form the basis set for expanding the natural 

mm 1 / O 
orbitals. The symmetric orthogonalization, § ^ preserves 

the cylindrical symmetry properties of this set of atomic 

orbitals and since the natural orbitals can be chosen to be 

symmetry adapted functions (87), the orthogonal transforma

tion, T, is chosen so as to preserve this symmetry also. 

Thus, the angular quantum number, m, from the atomic orbitals, 

Eq. 40, can also be used to describe the symmetry of the NO's. 

Thus the symbol, w[m] implies that the NO has a definite 

functional form with respect to the variable 4) as given by 

Eq. 42. 

To obtain the required molecular symmetry, the basis 

functions have been chosen such that, if mj^O for a particular 

atomic orbital, then a companion orbital will appear in the 

basis set: both will have the same values for n,£ and C 

but the remaining quantum number will be +|m| in the one and 

-1 in I in the other orbital. Thus both w[m] and w[-m] will be 

available as NO's. 

For the singlet geminals, if <j'^=w[m], m^O, then 

= w[-m] and the term, 

c{w[m] (1) w[m] (2) + w[-m] (1) w[-ra] (2)4 (60) 
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will appear in the expansion of the geminal. For the triplet 

geminal, all of the NO's designated will be functions 

w[m], with m>0 only and the corresponding NO's, y^, will be 

the functions, w[-ra]. Thus each term of the geminal expansion 

will assume the spatial dependence, 

cfw[m] (1) w[-m] (2) - w[-m] (1) w[m] (2)4 (61) 

in accord with Eq. 10. By this construction, each of the 

geminals will have the desired symmetry properties, 

Orbitals for the Nitrogen Atom 

For an atom, the wave function must be an eigenfunction 

2 of L as well as L^. The electronic ground state of the 

4 nitrogen atom has the spectroscopic designation, S, denoting 

a quartet spin state being totally spherically symmetric. 

Three geminals plus one orbital are used to describe this 

seven electron system. Two of the geminals are used for the 

2 2 description of the "Is " and "2s " electron pairs and are 

labelled K and L respectively. These each have the symmetry, 

^S, The remaining geminal is again a triplet, as before, 

with S^=+l and the orbital is taken to have spin a .  The 

product of this triplet geminal and orbital are used to 

3 provide the description of the 2p configuration. 

In Lhc atomic case, the spherical symmetry properties of 

the basis functions can be preserved on forming the NO's so 

that the latter will have a definite angular dependence as 

given by Eq. 41 and consequently the designation, w[f,m]. 
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To obtain the required atomic symmetry, the basis functions 

have been chosen such that, if 2i+l atomic orbitals will 

appear in the basis set: each will have the same value for 

n, and ç but there will be one function with each of the 

allowed m values. Thus the complete set of NO's, w[f,m], 

(m=£, £-1, , will be available. 

For the singlet geminals, if £7^0, the term, 

£ 
c{ E w[i,m] (1) w[i,ra] (2)4 (62) 
m=- £ 

will appear in the expansion of the geminals. For the 

triplet geminal, the NSO expansion will be limited to one 

term where X=w[+l,+l]a and Y=w[+l,-l]a. The lone orbital 

will be taken as Z=w[+l,0]a and therefore, this geminal-

orbital product will appear as follows; 

•[w[+l,+l] (1) w[+l,-l] (2) - w[+l,-l] (1) w[+l,+l] (2)4 

. w[+l,0] (3) • a(l)a(2)a(3). (63) 

The partial antisyinmetrizer, Eq. 22, will produce an overall 

quartet S state out of this product by properly permuting the 

three electrons between the geminal and orbital. The anti-

symmotrized, three particle geminal-orbital product will be 

equivalent to the singlet determinant, 

|w[+l,+l] (1) w[+l,-l] (2) w[+l,0] (3)1 .a(l)a(2)a(3). (64) 

The total atomic wave function has therefore been 

constructed essentially as an antisyrametrized product of 

strongly orthogonal group functions in the sense of McWeeny 
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(88). Here, two of these group functions are the two particle, 

geminals, K and L, while the remaining group function is the 

4 
three particle, S determinant, Eq. 64. This latter group 

function will be labelled Q and called the quartet group, by 

analogy to the naming of the triplet geminal of NH. 

Atomic Orbital Basis Sets 

The particular atomic orbitals comprising the basis sets 

for the imidogen molecule are given in Table 1. (For con

ciseness, the AO's with quantum number, m<0, have been 

omitted I'rom the table.) The orbital exponents are functions 

of R and the table is arranged accordingly. For each value 

of R, the individual ç's should be obtained by independent 

minimization procedures. 

For R=1.9614 bohrs, a complete minimization with respect 

to the Ç parameters has been undertaken. For all other values 

of R, the minimization process has been carried out with re

spect to classes of ç's in order to expedite the calcula

tions. The division of AO's into classes is made on the 

basis of the expectation value of the distance from the AO 

origin, <r^>, 

<ra> - /dV x- Xi- (65) 

From the values given in Table 1 for this quantity, the AO's 

are divided into three classes: inner nitrogen, outer 

nitrogen and hydrogen orbitals. The inner orbitals, with 

<r^ less than 0.4 bohrs, are in fact the major contributors 
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to the NO'S which provide the K shell geminal description 

while the remaining orbitals are used mainly to describe 

the outer electron pairs. 

This grouping of AO's into classes has been used to 

parametrize the ç's in the following way. For each class of 

orbitals, an R-dependent scale parameter, n(R,k), has been 

defined such that the value of a ç for an AO in the class 

for the distance R will be related to the value of the same 

AO Ç for R=1.9614 by the relation 

ç(R) = n(R,k) . ç(lo9614). (66) 

The three scale factors are found by minimizing the total 

energy with respect to these ri's. In addition, an overall 

scale factor is used for each value of R which scales all 

of the ç's by the same factor; the value of this parameter 

is found by the energy minimization procedure as well. There

fore, for each value of R, there are four orbital exponent 

scaling parameters and their effect on the orbital exponents 

can be seen in Table 1. 

It is desirable to construct a basis set for the nitrogen 

atom such that the total wave functions of the atom and 

molecule will be of comparable accuracy. This is accomplished 

by choosing for the atomic basis set, the same twenty-two 

AO's centered on the nitrogen nucleus which are used for the 

molecular basis set. The individual C's for the atom, 

however, are found by an independent minimization procedure, 

the results of which are given in Table 1. 
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Natural Orbitals and Occupation Coefficients 

The natural orbitals are obtained from the basis set by 

means of the transformation matrix, D, given in Eq. 45. The 

optimal values found for the parameters, 7, will be exhibited 

by means of D rather than by tabulating the 7's themselves 

since Eqs. 57 and 59 allow the latter to be calculated from 
i 

D for any particular orthogonalization procedure desired. 

Each natural orbital in Table 2 is given a label of four 

symbols. The first designates the geminal in which it is 

used, the second specifies the order of importance of the 

given NO within the geminal, the third indicates the symmetry 

type of the NO, and the fourth gives the order of importance 

of the NO within its symmetry type within its geminal. Thus, 

the NO label, "Bonding SttI", denotes that NO of the bonding 

geminal, which has the third largest occupation coefficient, 

has pi symmetry and within this symmetry has the largest 

occupation coefficient. The numbering of the AO's on the left 

hand side of the table corresponds to the numbering of the AO 

basis functions given in Table 1. The occupation coefficient 

(OC) for each NO is given below the corresponding column of 

D matrix coefficients in the table. 

For each internuclear distance, R, of interest for the 

molecule, optimal values for the ç and 7 parameters must be 

found. The ç variations, as a function of R, which have been 

discussed above, alter the basis set and in turn the natural 
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orbitals. Changes in the 7*s alter the form of the NO's 

only. 

For R=1.9614 bohrs, the full minimization procedure was 

executed with respect to the individual 7's as well as the ç's. 

In order to expedite the minimization problem with respect to 

the 7's for other values of R, a grouping of these parameters 

was employed wherein all 7's within a group were varied si

multaneously rather than individually. Since there was a pos

sibility that this grouping of terms might be too rigid, some 

overlapping of groups was allowed for in order to help offset 

the effects of this limitation. Since a particular angle, 

7p^, essentially governs the interaction between the NO's, 

p and q, the following groups were chosen: (1) the set of all 

7's connecting a orbitals with other a orbitals; (2) the set 

of 7's connecting ir with other ir NO's; (3) all 7's connecting 

K shell no's with other K shell NO's; (4) all 7's between the 

K shell and outer shell orbitals; (5) the 7's between the 

principal lone pair NO with all other NO's; (6) the 7's be

tween the principal bonding NO with all other NO's. 

Table 2 lists these data pertaining to the natural 

orbitals of NH for the internuclear distances, R=1.8, 1.9, 

1.923, 1.9614, 2.0, 2.05, and 2.10 bohrs. For the nitrogen 

atom, the D matrix was found by an independent minimization 

with respect to the individual 7's. This D matrix and the 

nitrogen atom OC's are presented in Table 3. 
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Contour maps have been drawn to supplement the 

description of the natural orbitals given in Tables 2 and 3. 

They are drawn in a plane containing the molecular axis and 

perpendicular to the nodal plane of the ir orbitals. A par

ticular solid curve connects coordinates in the plane for 

which the orbital has a particular positive value. The dashed 

curves connect coordinates at which the orbital has particular 

negative values. The zero contour curves are drawn with dotted 

lines. The highest and lowest contour values drawn are 

_o/9 —3/2 
±0.50 bohr and the increment used is 0.05 bohr . The 

positions of the nuclei are indicated by the notches drawn 

along the borders of the map and by the labels along the 

right-hand side. For NH, the NO's correspond to the inter-

nuclear distance, R=1.9614 bohrs. 

The principal natural orbitals are seen to be those 

having the least number of nodal surfaces cutting the contour 

plane. The energetically less important NO's have smaller 

occupation coefficients and more nodes in general. The 

influence of the hydrogen atom can be seen by comparing NO's 

in NH and the N atom. The K shell NO's of NH (see NO Con

tour Maps 1-4) show only a very slight asymmetric deviation 

when compared to the atomic K shell NO's (see NO Contour Maps 

21-23) whereas the outer shell NO's are all influenced 

greatly by the H atom. 

Because of the higher symmetry of the atom, certain NO's 

in the molecule will coalesce in the separated atom limit. 
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For instance, when R-s-oo, the K Shell SttI and K Shell 4a3 

natural orbitals in NO Contour Maps 3 and 4 will form the com

ponents of the nitrogen K 3pl natural orbital given in NO 

Contour Map 23. 

Energy 

Correlation energy 

The total electronic energy, E, calculated from the 

separated pair (SP) wave functions for imidogen as a 

function of R is given in Table 4. Also given is the energy 

of the Slater determinant obtained by using just the prin

cipal natural orbital (PNO) of each geminal: 

E(PNO) = V + L E(jiO,(iO) + L I(pO,uO) (67) 
^ II n<u 

where these quantities have been defined in Eqs. 29, 36 and 

37. This wave function and its energy are very close to those 

of the Hartree-Fock approximation (4,89) and the difference 

between the SP and PNO energies therefore essentially repre

sents the correlation energy. It is listed in the third 

section of Table 4. 

A decomposition of these energies is also contained in 

Table 4. In addition to the nuclear repulsion it shows 

the contributions from the one- and two—electron operators 

which form the Hamiltonian for NH, viz; the nuclear-electronic 

attractions, and V^, electronic repulsion, V^g, and 

electronic kinetic energy, T. The new symbols are defined 

as the expectation values. 
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(69) 

(68) 

(70) 

where the definitions of Eqs. 31 and 32 have been used. 

The decrease in on going from the PNO to the full separated 

pair wave function represents the most important effect of 

correlating the wave function. As expected, the change in 

kinetic energy is the largest among the one-electron properties 

but the nuclear attraction energy changes are themselves 

significant. 

Equilibrium distance 

The virial theorem can be used to obtain an estimate of 

the equilibrium internuclear distance, R^. It is written as 

follows ; 

where p^ represents each of the independent variational 

parameters entering the wave function. On the assumption 

that all of the parameters, p^, have been assigned optimal 

values, the last term in Eq. 71 is taken to be zero and thus, 

Values of this quantity are given in Table 4. In Graph 1, 

the negative of the kinetic energy is plotted along with the 

(71) 

- - (T + E) / R. (72) 
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total energy for both the SP and PNO wave functions. The 

value of R corresponding to the intersection of the E and -T 

curves is taken to be (virial). It has the value 1.965 

bohrs for both cases, which deviates from the experimental 

of 1.9614 bohrs by ~0.2%. 

Dissociation energy 

The separated pair dissociation energy of the molecule is 

obtained as the difference between the SP energy value of the 

separated atoms and the value at the minimum of the SP molecu

lar energy curve and similarly for the PNO dissociation 

energy. The calculated values are as follows: D^CSP) = 

2.65eV and (PNO) = 2.00eV. These are to be compared with 

the experimental dissociation energy corrected for zero-point_ 

energy. Cade and Huo (1) suggest D^Cexptl) - 3.80eV to be 

the most internally consistent of the experimental values 

(33-35,90). 

The difference between the PNO and experimental 

dissociation energies for diatomic hydrides is due to the 

change in correlation energy between the molecule and its 

separated atoms. The improvement of 0^(8?) over (PNO) 

represents about 36% of the PNO-experimental difference and 

it will be seen to be due to the inclusion of intrageminal 

correlation energy effects in the bonding geminal alone. 

The remaining error in is judged to be due to intergeminal 

correlation energy changes within the valence shell of the 

molecule. This conjecture draws support from a similar 
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conclusion of Bender and Davidson (91) who estimated that 

about one—third of the atom-molecule correlation change 

between F and HF is due to correlation within the HF bonding 

geminal and the remainder is due to inter-pair correlations. 

Total energy 

The total "experimental" energy of NH is calculated from 

the equation: 

7 _ = 
E(exptl) = L (I.P.). +E(calc,N ^)-0.5+D (exptl)+E(rel) (73) 

i=3 1 

where (I.P.)^ is the ionization potential of the i-th 

electron of the N atom; E(calc,N ^) is the Pekeris (92,93) 

_5 two-electron, N atomic energy; -0.5 is the energy of the 

hydrogen atom; D^(exptl) is the experimental dissociation 

energy mentioned above; and E(rel) is the sum of all pertinent 

rolativistic energy effects. The accuracy of E(exptl) is 

limited by the accuracy with which D^(exptl) is known: using 

their suggested value for Dg(exptl), Cade and Huo (1) recom

mend a value for E(exptl) of -55.252 hartrees. The separated 

pair energy of -55.03352 hartrees is clearly not within the 

range of chemical accuracy but the SP wave function neverthe

less has its usefulness and moreover represents the most 

3 — 
accurate of previous calculations (1,59-68) on the E 

ground state of the NH molecule. For comparison, a list of 

previous theoretical investigations on the imidogen 

molecule has been prepared in Table 5. Only ̂  initio 

calculations have been tabulated and for those cases where 
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the energy has been calculated at more than one value of R, 

only the lowest value of E obtained is given along with the 

corresponding value of R. The remarks given in the table 

are intended to briefly describe the various techniques and 

types of basis functions employed. The table does not 

include semi-empirical calculations (54-58). 

Dependence upon internuclear distance 

The calculations on NH reported by Cade and Huo (1), 

which are here referred to as the SCF results, are believed to 

be very close approximations to the true Hartree-Fock sol

utions and thus they have been used as a guide for judging-

the accuracy of the present work. In Graph 2, the total 

energy has been plotted as a function of R for the separated 

pair and PNO wave functions and for the Cade and Huo SCF 

wave function. The PNO and SCF energy curves should be 

grossly similar although they differ in detail. 

A fair difference in curvature is seen in Graph 2 

between the PNO and SCF curves and this is due to the choice 

of a non-perfect minimization procedure. The reason for this 

choice is that the results of the previous section as well 

as those of the subsequent section show that essential cor

relation energy contributions are not recovered by the SP 

wave function. Therefore, the efforts required to execute 

a more perfect minimization process are not justified. 

For internuclear distances less than about 1.8 bohrs or 

greater than about 2.1 bohrs, a more complete minimization of 
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individual parameters would seem to be necessary. Within 

these limits however, the parameters entering the separated 

pair wave function are expected to have close to optimal 

values. The NH orbital exponents given in Table 1 and the D 

matrices given in Table 2 as well as calculations of other 

properties of imidogen have therefore been restricted to this 

range of internuclear separations. 

It is also true that the separated pair wave function 

does not dissociate into species with the required spin 

characteristics in the limit when R -+ oo. (The SCF function 

also dissociates improperly but its behavior for large R is 

not the same as the SP wave function.) In order to achieve 

the proper dissociation properties, the total SP wave function 

could be expressed as a linear combination of separated pair 

wave functions but such a procedure is beyond the scope of 

the present work. Even with a perfect minimization procedure, 

this dissociation problem would limit the range of inter

nuclear distances over which the NH separated pair wave 

function will be adequate. 

Correlation Energy Analysis 

The improvement in the energy of the separated pair wave 

function over the SCF result is due to the inclusion of 

certain electron correlation effects. In general, the separat

ed pair wave function furnishes a means of recovering intra-

geminal correlation but no direct facility is provided for 
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recovering intergeminal correlations. The analysis which 

follows is intended to provide some insight in the separated 

pair approximation and its ability to handle the correlation 

effects which arise in NH. In Table 4, a decomposition was 

made of the "natural orbital correlation energy", AE, defined 

as the difference between the total SP energy and the PNO 

energy. The value of AE obtained with this definition differs 

from the correlation energy defined with respect to the SCF 

energy by 9% for wave functions corresponding to R=1.9614 bohrs. 

Geminal analysis 

The correlation energy is defined by: 

AE = E - E(PNO) (74) 

where E and E(PNO) are given by Eqs. 33 and 67 respectively. 

According to these equations, the correlation energy is 

decomposed, 

AE = ZAE(M) + Z AI(H,U), (75) 
n<'0 

into intrageminal contributions, AE((x), 

AE(|i) = E AE(|xi,|xj), (76) 
ij 

and intergeminal interactions, AI(p,D), 

AI(|x,d) = L AI(tii,t3j), (77) 
ij 

where by virtue of Eqs. 3 3-35, 

AE(jii,|ij) = c . c .[E(iii,|ij) - Ô E(|iO,fiO)] (78) 
P ̂ r J 

I 
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AI(ixi,uj) = cf. c^ [I(|ii,uj) - 1(^0,uO)]. (79) 
M* uj 

According to the remarks in the paragraph beginning after Eq. 

39, the energy lowering, AE(ix), arises from correlation between 

two electrons within the fx-th gerainai whereae, AI(|i,t)) repre-

sentsan energy change due to an electron pair with one partner 

in gerainal jx and the other in geminal u. 

Table 6 lists the triangular matrices of intrageminal 

and intergeminal contributions to the PNO energy, E(PNO), and 

those to the correlation energy, AE. The diagonal elements of 

the two matrices are E(^0,p0) and AE(^); the corresponding 

off-diagonal elements are 1(^0,uO) and AI(^,D). The sum of 

these PNO and correlation terms plus the nuclear repulsion, 

gives the total SP energy E. 

Certain features of the geminal correlation energy 

matrices are to be noted. The diagonal elements are all 

negative whereas the off-diagonal elements are both positive 

and negative. For each of the NH and N wave functions, how

ever, the sum of these intergeminal terms does give a net 

negative contribution to the correlation energy but it repre

sents only 4.5 to 2.5% of the total AE. Therefore, the 

energy gains recovered by the SP wave function can indeed be 

classified as being derived almost entirely from intrageminal 

correlations. Furthermore, from Table 6, the source of the 

intrageminal energy lowerings can be ascribed principally to 

correlations within the K shell and bonding geminals. The 

triplet and lone pair geminals give only slight energy gains. 
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For the triplet, this is expected since the tv/o electrons 

forming the geminal have parallel spins. For the lone pair, 

this result is contrary to expectations and therefore this 

situation will be further investigated below. 

The changes in the diagonal terms, AE(|jl), as R increases 

are the smallest for the K shell and lone pair geminals. The 

changes in the triplet intrageminal term, although larger 

than the changes found in the K shell and lone pair terms, 

are also fairly small. Only the bonding intrageminal correla

tion energy contribution is substantially affected by increas

ing the internuclear distance. The change in this one term 

is more than an order of magnitude greater than the sum of the 

changes in all of the other intrageminal and all of the inter-

geminal terms combined. This is the result of the increasingly 

important role played by thé secondary bonding NO's in the 

NH wave function as R becomes large. The reason for this 

dominating effect is not too clear at the present; perhaps it 

is due to the omission of correlations between the bonding, 

lone pair and triplet geminals. 

In the nitrogen atom, the quartet group, which consists 

of the bonding orbital and triplet pair, is described by a 

single three-particle determinant and thus there is no intra-

group correlation energy available from this source. The 

nitrogen K and L geminals have intrageminal correlation 

energies which are larger than those present in the molecule 
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and intergeminal correlations which are negative but smaller 

in magnitude than their molecular counterparts. 

Natural orbital analysis 

A further decomposition of the correlation energy 

exhibits natural orbital correlation effects. The total 

intrageminal correlation energy contribution of the n-th 

gerainal is decomposed as follows: 

AE((i) = E AE(iJLi) (80) 
i(/0) 

where the contribution of the jii-th NO is defined as 

AE((ii) = AE(|ii,|iO) + E AE(|ij,jii). (81) 
j 

[This differs from the definition used by Miller and 

Ruedonberg (4, see Eq. 64).] For all secondary NO's in the 

K shell, lone pair and triplet geminals of NH, this quantity 

can be approximated to an accuracy of 10 ^ hartrees by the 

following: 

AE(iii) AE(jii,jxO) + [AE(nO,|ii) + AE({xi,|ii)] (82) 

where the second term in brackets is the NO self-energy and 

the other terms are the exchange interactions with the 

principal NO of the geminal. For NO's in the bonding geminal, 

-4 
this relationship holds true to an accuracy of only 10 

hartrees because of the exchange interactions involving the 

strongly occupied secondary Bonding 2a2 natural orbital. For 

most of the NO's, the two terms in brackets in Eq. 82 are 

about equal in magnitude but opposite in sign and therefore 
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the remaining exchange integral governs the intrageminal 

correlation gain. Both AE(|ii,|iO) and AE(^i) are given in 

Table 7 and the principal exceptions to the rule are seen to 

be the Lone Pair 2a2, Bonding 2o2, Bonding SttI and Bonding 

4a3 secondary NO's. 

The total intergeminal contribution arising from the 

P-i-th NO is defined by 

Al(iii) = E E AI(^i,uj), (83) 
3 

and for the NH wave functions, this quantity can be 

approximated by 

Al(ixi) ~ Z AI(iii,uO) (84) 
u(̂ p) 

since all secondary-secondary intergeminal interactions are 

less than 10hartrees. From Table 7, only four secondary 

NO's are seen to have substantial values for Al(^i) and these 

are the same NO's mentioned above. Three of these, Lone Pair 

2a2, Bonding 3^1 and Bonding 4a3, contribute more energy from 

intergeminal sources than they do from intrageminal sources. 

The total contribution, A(pi), from the pi-th NO to the 

correlation energy is defined as the sum of its total intra

geminal and intergeminal contributions: 

A(iAi) = AE(|ii) + Al(pi). (85) 

From the tabulated values of this quantity and from the 

occupation coefficients listed, it can be seen that within 
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each geminal, the NO's which are energetically more important 

have occupation coefficients with larger magnitudes. 

The energetically most important secondary NO is the 

Bonding 2a2 function. The K Shell 2a2 natural orbital is 

next in importance and gives an energy lowering that is only 

half as large. Next, the K Shell Sirl, K Shell 4o3 and 

Triplet 2Tr2 secondary NO's give correlation gains that are 

about one-fourth that of the Bonding 2a2. The Lone Pair 2o2, 

Bonding 3itI and Bonding 4a3 orbitals, which are next in 

importance, give about one-eighth the gain of the Bonding 

2a2 orbital. The NO's mentioned here are the principal sources 

of the energy lowering in the SP wave function; the remaining 

NO's give relatively unimportant contributions to the total 

energy lowering. 

Assignment of natural orbitals to geminals 

There exists an "exclusion principle" for NO's between 

geminals because of the strong orthogonality condition and in 

some cases, it is not obvious in which geminal, certain NO's 

will be most effective. In order to determine the amount of 

correlation energy which different NO's can recover in dif-

IcrenL geminals, calculations were performed in which all of 

the secondary natural orbitals were placed successively in 

each of the geminals. In each case the eigenvalue equations, 

50 , were solved for the occupation coefficients and all of 

the orbital correlation energy quantities given in Table 7 

were recomputed. The results are given in Table 8. Here, 
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the no's are still identified, in the left-hand column, by 

the labels they have in Table 2. 

The first section of Table 8 lists the results of a 

calculation where all secondary NO's are placed in the K 

shell geminal. It shows that only the NO's with labels "K 

Shell" are effective in correlating this geminal. The second 

section of the table lists the results of a calculation where 

all the secondary NO's are used in the lone pair geminal. 

Likewise, the third and fourth sections contain the results of 

calculations with all of the secondary NO's being assigned to 

the bonding and triplet geminals, respectively. It should 

be mentioned that the energy lowering, A(^i), for any par

ticular natural orbital, [ii, is essentially independent of 

which other NO's are present in the geminal, since only the 

interactions of the fii-th NO with the PNO are substantial. 

From the table, it can be seen that the NO's giving 

large correlation energy lowerings in one geminal usually do 

not give significant gains in other geminals. This is es

pecially true of the NO's: K Shell 2o2, K Shell SttI, K Shell 

4o3, Lone Pair 2a2, Bonding 2o2, Bonding 3vl, Bonding 4a3 and 

Triplet 2^2. Thus, the use of geminal names for labelling 

these NO's seems justified. The only exception is the Lone 

Pair 361 natural orbital which gives a larger correlation 

gain when placed in the triplet geminal instead of the lone 

pair geminal. It is nevertheless associated with the lone 

pair in order to build wave functions having nearly similar 
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properties for the molecule and atom, and in the latter, the 

set oi .'kl atomic orbitals are used for the L geminal descrip

tion and are prohibited from being used in the triplet atomic 

geminal. 

The total correlation energy recovered within each 

geminal in this way is given in the table. It might be 

possible to achieve slightly larger gains in each geminal if 

further minimization of the 7 and ç parameters would be 

carried out with the different arrangements of NO's, but the 

investment of computer time required for such a project was 

not considered warrented. 

Limitations of the separated pair approximation 

The most remarkable feature of the correlation energy 

analysis given above is the uniform inability of the separated 

pair wave function to provide for correlation in the lone 

pair geminal in NH. This is illuminated by examining the 

correlation situation in the L geminal of the beryllium atom 

(4). The total intrageminal correlation of the L geminal of 

Be was found to be -0.04928 hartrees, 96% of which was derived 

from the use of the L2p NO. This correlation arises from the 

near degeneracy (4,94,95) between the .L2s and L2p NO's which 

results in the large occupation coefficient of the L2p NO and 

the consequent strong interaction with the L2s PNO. If this 

L2p NO is removed from the L geminal, the L shell intrageminal 

correlation energy in Be drops to less than -0.002 hartrees. 
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In the N atom, a set of L2p NO's do exist (see NO 

Contour Map 30) but they constitute the quartet group PNO. 

Being thus occupied, the constraint of strong orthogonality 

precludes the use of these NO's in any other geminal. In 

NH, the X and y components of the L2p NO form the triplet 

PNO (see NO Contour Map 18) while the z component of the L2p 

shares in the formation of the bonding PNO (see NO Contour 

Map 10). Again strong orthogonality renders these NO's 

unavailable for usage in the lone pair geminal. It is this 

unavailability of the L2p orbitals for the lone pair geminal 

that depresses its intrageminal correlation energy contri

butions in N as well as NH. 

One might consider placing the L2p NO's in the lone pair 

geminal and then, for strong orthogonality reasons, dropping 

them from being used as PNO's in the other geminals. A 

calculation with a wave function of this type was performed 

where the Triplet lirl and Triplet lil NO's were removed from 

the triplet geminal and placed in the lone pair geminal. The 

eigenvalue equations, 50, were solved and a correlation an

alysis made. The gain in lone pair intrageminal correlation 

was found to be -.03240 hartrees which agrees closely with 

the expected gain of (2/3)•(0.96)•(-0.04928) hartrees (only 

two out or three 2p components were used). However, the 

triplet geminal, which now had to use its 2^2 NO's as its 

PNO's, suffered a loss of over 2.7 hartrees and thus the use 
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of the Triplet lirl NO's in any other geminal but the 

triplet was found to be prohibited. 

Strong orthogonality is thus seen to be a severe 

handicap in handling intragerainal correlation energy effects 

in cases where the necessary correlating NO's must be occupied 

as PNO's in some other geminal or where a particular secon

dary NO can be useful for correlation in several different 

geminals. For NH, a relaxation of the strong orthogonality 

condition between the three outer shell geminals might prove 

sufficient to relieve this situation. In addition some of 

the pair correlation energy gains presented in Table 8 might 

prove to be additive with the strong orthogonality constraint 

removed. However, even with the most optimistic estimates 

for the total intrageminal correlation energy gains, there 

is still a substantial amount of correlation energy unre-

covered. For instance, assuming that ~1 eV were available 

as intrageminal correlation in each of the singlet geminals 

and ~0.,3 oV in the triplet geminal, there would still remain 

6.8 -3.3 == 3.5 eV to be accounted for. It must be concluded 

that the source of this energy difference has to be attributed 

to intergeminal correlation effects. 

Limited-Configuration Separated Pair Approximations 

Recently, attention has been drawn to the utility of 

wave functions containing only a limited number of configura

tions beyond the principal term (96-100). In this regard, it 



www.manaraa.com

51 

is of interest to study the effect on the molecular energy 

curve for NH of omitting certain secondary natural orbitals 

from the full separated pair wave function. 

From the discussion of the correlation energy, it is 

realized that only the K shell and bonding geminals are sig

nificantly enhanced by the inclusion of secondary NO's in 

the SP geminals. Thus one limited wave function consists of 

the PNO's and the K Shell 2a2, K Shell SttI, K Shell 4o3, and 

Bonding 2O2 secondary natural orbitals. This wave function 

is denoted "K + B" and has a comparable nitrogen atom wave 

function consisting of the PNO*s and the K 2s2 and K 3pl 

secondary NO's. These NH and N wave functions both have 

equally correlated K shells and only the Bonding 2o2 function, 

which has no counterpart in the atom, has been added to the 

molecule. An even simpler set of wave functions denoted by 

"B" is obtained by using only the PNO's for the atom and aug

menting this with the Bonding 2o2 natural orbital for the 

molecule. 

Table 9, lists the energy results corresponding to the 

SP, K + B, B, and PNO wave functions of the NH molecule and 

the nitrogen atom. For each of the approximations, the sum 

of the hydrogen atom energy plus the corresponding nitrogen 

atom energy is subtracted from the molecular energy to give 

the binding energies. 

In Graph 3, it is seen that the B and PNO curves are 

not parallel. This behavior is due of course to the inclusion 
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of the single correlating NO in the bonding geminal. Since 

the SP, K + B, and B curves have quite similar curvatures, 

it is concluded that thé R-dependence of these curves is 

governed essentially by the PNO's and the Bonding 2a2 

function. Although the shape of the SP energy curve is 

retained by the B and K + B wave functions, the absolute 

values of the total energy and binding energy are affected. 

For the B and K + B approximations, the total energy loss 

amounts to 1.11 eV and 0.45 eV respectively and the loss of 

the binding energy is 0.11 eV and 0,30 eV for the two wave 

functions respectively. 
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OTHER PROPERTIES 

Spectroscopic Analysis 

In order to relate the calculated potential energy 

curve to spectroscopic results, the analysis of Dunham (101) 

is the most practical approach. It involves fitting the 

potential curve by a polynomial of which the terms of order 

higher than the fourth are expected to be negligible. The 

first four terms are written in the form, 

E(R) = E(Rg) + a^p^ (1 + aj^p + a^p^) (86) 

where 

p = (R - Rg) / Rg. (87) 

Then the standard spectroscopic constants, (rotational 

constant), (rotational anharmonicity), (force constant), 

03^(vibrational frequency), and oo^x^(vibrational anharmonicity), 

can be simply calculated from a^, a^ and a^ (101, Eq. 15). 

In the present case, the seven points between R=l,8 and 

2.1 bohrs have been chosen to determine the polynomial con

stants, a^, a^^ and a^. This is accomplished by finding the 

least-mean-square fit of the points on the energy curve to a 

fourth-order polynomial, determining R^, the R value for which 

this quartic has its minimum, and then carrying out a trans

formation to the reduced variable p of Eq. 87. This gives 

the desired power series expansion of E about the equilibrium 

point R^. The resulting spectroscopic constants are listed 
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in Table 10; caution should be used in judging them however, 

since their reliability is limited by the fact that the 

number of points used for the determination of the fourth-

order fit is relatively small. A self-consistency check is 

provided by comparing the equilibrium internuclear distances 

obtained from the Dunham analyses with those predicted using 

the virial theorem. The quantities, R^(virial) and (Dun

ham) , agree to 0.03 and 0.8% for the SP and PNO wave functions 

respectively. 

The accuracy of the rotational constant, is due to 

the close agreement of (Dunham) with the experimental value. 

The three constants, a^, and œ^, depend strongly on the 

curvature of the E versus R curve as well as on R^. Since 

a full minimization of all wave function parameters could 

be executed for only one value of R, namely R = 1.9614 bohrs, 

whereas for all other R values, the minimization process 

was systematically restricted as described in a previous 

section, the resulting SP and PNO energy curves are expected 

to rise more sharply than the true energy curves as the 

distance from R = 1.9614 bohrs increases. This effect is 

especially noticeable for the constants k^ and which 

depend on R^ and a^ only. The extremely close agreement of 

the SP value obtained for the constant m^x^, which depends 

upon the anharmonicity terms a^ and a^ as well as the distance 

Rg, is probably due to a fortuitous cancellation of errors 

in the coefficients and a^. The energy, E^, quoted in 
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Table 10 is that obtained from the Dunham polynomial with 

the given coefficients and thus corresponds to E(R^) in Eq. 

8 6 .  

For comparison purposes, an "experimental" energy curve 

for NH has been constructed by finding that polynomial in 

the reduced variable p which, when expanded about the point 

R^(exptl), gives the experimental values for the other spec

troscopic constants. The resulting "Dunham polynomial" is 

plotted in Graph 4 with the SP and PNO Dunham functions. As 

expected, close agreement is obtained for the minimum of the 

curves but further minimization of wave function parameters 

is necessary in order to obtain closer agreement for the 

shape of the curves. 

Since the systematic deviations in E(R), introduced by 

the choice of minimization technique, increase as the distance 

from increase, one might expect to obtain better results 

by limiting oneself to a closer range on the E(R) curve. 

There is, however, a practical limit to such a narrowing of 

the range because any polynomial fit based on a number of 

points on the E(R) curve can be meaningful only to a degree 

n given by the condition that the n-th order differences, 

remain larger than the numerical inaccuracies in the values 

of E(R) available at the given points. Because of this, it 

is not possible to determine the higher expansion coefficients 

if all points are chosen too close to R^. Therefore, it is 

necessary to include points of E(R) taken over a certain 
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minimum range around in the polynomial fit. In the case 

of NH, the range, R =1.8 to 2.1 bohrs, was considered to be 

the best compromise. 

One-Electron Expectation Values 

The one-electron properties of a wave function provide 

information about the electronic structure present in the 

molecule. For the separated pair wave function, the ex

pectation value of a one-electron operator, p(l), is obtained 

from the first order density matrix given in Eq. 26: 

P(SP) = N"^ /dx^ p(l)7(lll) (88) 

whence 

P(SP) = L c,fp(|ii) (89) 
[ii 

with 

P((ii) = ((i, 2i I p||i, 2i) + (|ji,2i+llpl|i,2i+l) (90) 

(see Eq. 38). The geminal one-electron property, P(|i), is 

obtained by summing only over i for fixed p, in Eq. 89. The 

PNO property is defined as 

P(PNO) = E P(piO) . (91) 
K 

The to Lai effect of correlation on the value of the 

property is then given by 

P(CORR) = L AP(ji), (92) 

where the geminal correlation property, AP(p.), is 

AP({i) = E cj [P(iii) - P(pO)]. (93) 
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The quantities, P({iO), AP(fi) and P(|i), for each geminal 

as well as the total quantities, P(PNO), P(CORR) and P(SP), 

are given in Table 11 for a selection of twenty one-electron 

operators. This decomposition refers to the wave function at 

the experimental equilibrium distance R^(exptl) = 1.9614 

bohrs. The column labeled % contains the percentage of P(SP) 

contributed by P(CORR). Most of the expectation values are 

self-explanatory since the corresponding operators are simple 

functions of spherical polar coordinates, (r 0 (j) ), cartesian 

coordinates, (x y z), or elliptic coordinates, (Ç n tj) ), de

fined with respect to axial systems with origins located at 

the nitrogen and hydrogen nuclei. The only exceptions are d 

and Q, which represent the intrinsic molecular dipole and 

quadrupole moments respectively. To avoid geometrical multi-

pole effects, these quantities are defined with respect to an 

origin situated at the center of charge of the molecule. Due 

to the cylindrical symmetry of NH, the center of charge lies 

on the molecular axis and is located between the nuclei at the 

distance c from the nitrogen atom given by 

c = (R^g + E <Zjj^»/16 (94) 
i 

where is the component along the molecular axis of the 

radius vector from the nitrogen nucleus to the i-th electron. 

Using a cartesian system located at c with its z-axis 

pointing toward the hydrogen atom, d and Q are given by the 

following standard definitions: 
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(95) 

(96) 

in which Z is the charge on the a nucleus, z _ and z . 
a ' ca ci 

are the vector distances along the molecular axis from the 

center of charge to the a nucleus and the i-th electron re

spectively, and r^^ is the radial distance from c to the 

electron i. For the NH wave functions given here, the 

intrinsic quadrupole moment tensor is diagonal and has the 

form; 

For the decomposition of d and Q into geminal 

contributions, the nuclear charges have been divided amongst 

the geminals in the following way. The K shell, lone pair 

and triplet geminals are each associated with two nitrogen 

protons. The remaining nitrogen proton and the hydrogen 

proton are assigned to the bonding geminal. For the four 

resulting "geminal" charge distributions, d and Q are calcu

lated with respect to the same center of charge, c, given in 

Eq. 94. For d, one obtains intrinsic geminal dipole moments 

because each of the charge distributions consists of an 

equal number of positive and negative charges. For Q, one 

obtains geometrical geminal quadrupole moments; however, 

-1/2 0 0 

Q = Q 0 -1/2 0 

0 1 (97) 
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because of the common origin at c, the four geminal moments 

can be added to give the total intrinsic molecular quadrupole 

moment. 

The role played by the secondary natural orbitale is 

that of augmenting the description of the geminal furnished 

by the PNO. For the K shell, lone pair, and triplet geminals, 

the effect of correlation is practically nil for all of the 

properties listed. The bonding geminal is the one that is 

influenced most by its secondary NO's, especially in terms of 

the bonding dipole and quadrupole moments. The percentage 

change in the property value due to correlation is quite 

small in general but it is to be remembered that even the 

correlation energy recovered by the SP wave function repre

sents only about 0.11% of the total energy. 

In Table 12, the R dependence of P(PNO), P(CORR), and 

P(SP) is displayed for each of the properties over the re

stricted range of internuclear separations. Graph 5 gives 

P(PNO) and P(SP) for the properties, d and Q, as functions 

of internuclear distance. The remaining properties are 

plotted against R in Graphs 6-9 but since P(CORR) is so small 

for these quantities, only P(SP) is given. 

Two-Electron Expectation Values 

The two-electron properties of a many electron system 

are those influenced most by the inclusion of correlation 

in the wave function. Although the separated pair 
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approximation takes account of only a limited amount of 

correlation, it is of interest to examine the changes which 

are produced in the values of some two-electron expectation 

values for the wave functions. The four operators to be 

studied here are 

""1 2 
^12 ' ̂12 ' ®12 N cos ©22 H ̂ ^ere 

=^12 - l^la - "2a I (98) 

®12,a ° 'la • ̂ 2a ̂  l̂ la' I'2aI <99) 

and r. is the distance vector from nucleus a to electron i. 
la 

The first two operators give a measure of the expected distance 

between any two electrons and the latter two give a measure of 

the angular correlation of two electrons. 

The expectation value of a two-electron operator, G(l,2), 

is found to be 

<G> = E E c c E (|ii,|ij) + E E c ? c ? I (|ii,uj) (100) 
|i i.j ^ ii<v ij ^ 

where the quantities and 1^ can be thought of as being-

defined by Eqs. 36 and 37 if the following two changes are 

made: the one electron integrals, (KkjhjXi), are dropped from 

Eq. 36 and the two electron integrals in those equations are 

taken to be defined by 

[K,kX,^||j,m u,n] = 2/N(N-l) /dlj /<)t2 ,(1) 
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with N being the total number of electrons. The factor 

involving N is used in order to give values for <G> that 

represent a single pair interaction within the N-electron 

system. 

One can decompose <G> by 

<G> = <G(PNO)> + AG, (102) 

which is analogous to Eq. 74, where <G(PNO)> arises from the 

principal natural orbitals and AG is the correlation correction 

due to the secondary NO's. These quantities are given by 

<G(PNO)> = Z E (iJiO,|JiO) + E I ((lOj-uO) (103) 
II |1<D 

AG = EAEp(fi) + E AI (ji,o) (104) 

where AE^({i) and AIg(ti,'D) can be defined by subscripting G 

onto each E and I in Eqs. 76 and 77. 

These properties are exhibited in Table 13 by means of 

geminal matrices which are analogous to those presented in 

Table 6. Listed are the triangular matrices of intrageminal 

and inlergeminal contributions to the PNO property, <G(PNO)>, 

and those to the correlation correction, AG, for each of the 

lour two-electron operators. The diagonal elements of the 

two matrices for each property are Eg(fJiO,|iO) and AEg(^), 

the corresponding off-diagonal elements are I^,((iO,uO) and 

AIç,(|Ji,u). The sum of the PNO and correlation matrix elements 

gives the total expectation value, <G>. 
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The lone pair and triplet geminal properties are seen 

to be the least affected by the inclusion of correlation. 

The K shell description appears to be changed mostly by 

angular effects as measured by <cos The largest 

correlation effects are seen in the bonding geminal where 

both the interelectronic distance and angular dependence 

are greatly influenced by the secondary NO's. 

The R dependence of the two-electron properties is 

given in Table 14 and plotted in Graph 10. Since the SP 

wave function dissociates into the neutral species, N and H, 

one of the NH electrons will position itself about the 

hydrogen atom while all others will remain associated with 

the nitrogen atom. Thus, as R increases, the pair property, 

O — 1 
^12 (^12 increase (decrease) for each of the pair 

interactions involving the "H atom electron". These inter

actions are averaged with all other pair interactions in the 

molecule by computing the expectation value and therefore 

2 one sees a very strong R-dependence in the quantities r^g 

- 1  
and r^g 

The angular functions have values which are very 

sensitive to the distance between the reference origin (the 

N or H nuclear center) and the centroid of the average 

pair. The centroid of the average pair is given by <r > 

of Table 12 when measured with respect to the a nucleus. 

As <r > increases, 0,„ decreases and thus <cos 0, „ > a ' 12,a 12, a 

increases. From Table 12 and Graph 6, <rg> is seen to 
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increase much more strongly than <r^ as R increases and 

thus the strong R dependence of <cos g> can be under

stood. The PNO value for <cos ^ increases slightly 

with increasing R as expected, but so slowly that the 

decrease in the correlation contribution (increase in magni

tude) eventually dominates and gives the expectation value 

the R-dependence seen in Table 14. 
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SUMMARY 

A general formulation of the separated pair approximation 

has been presented and used to calculate a wave function for 

the ground state of the imidogen molecule. Although the 

energy obtained with this wave function is better than any 

previously calculated result, the amount of correlation energy 

recovered has been found to be severely limited due to the 

constraint imposed by the strong orthogonality conditions 

and the omission of intergeminal correlations. Nevertheless, 

an understanding of the correlation problem in NH is 

achieved and the limitations of the separated pair method 

are documented. From the experience gained here, it must be 

concluded that a more general scheme for handling electron 

correlation must be employed if more than two outer-shell 

electrons are involved. 
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APPENDIX: GRAPHS, TABLES, NATURAL 

ORBITAL CONTOUR MAPS 
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TABLE 1. ATOMIC ORBITAL BASIS SETS 

NH, R = l.aCOO NH, R = 

N ATOM 
AO NLM ZETA <rN> ZETA 

1 100 6.23887 0.24 6.23584 
2 200 7.00044 0.36 6.99704 
3 210 7.52337 0.33 7.51972 
4 211 7.08395 0.35 7.08051 
5 200 1.15207 2.17 1.14252 
6 200 2.04880 1.22 2.03180 
7 210 1.12714 2.22 1.11779 
6 211 1.48111 1.69 1.46882 
9 210 2.59182 0.96 2.57032 
10 211 2.97545 0.84 2.95077 
11 300 2.50403 1.40 2.48326 
12 310 1.63311 2.14 1.61957 
13 311 1.98409 1.76 1.96764 
14 320 2.18191 1.60 2.16381 
15 321 2.28853 1.53 2.26955 
16 322 2.56072 1.37 2.53948 

H ATOM 
AO NLM 

17 100 
18 2CG 
19 210 
2G 211 

ZETA 

1.41948 
1.58862 
1.81543 
1.80215 

1 .06  
1.57 
1.38 
1.39 

ZETA 

1.34660 
1.50706 
1.72223 
1.70962 

9000 NH, R = 1.9230 NH, R = 1.9614 

<rN> ZETA ZETA 

0.24 6.23430 0.24 6.23302 0.24 
0.36 6.99531 0.36 6.99388 0.36 
0.33 7.51786 0.33 7.51632 0.33 
0.35 7.07876 0.35 7.07731 0.35 
2.19 1.14100 2.19 1.13781 2.20 
1.23 2.02909 1.23 2.02343 1.24 
2.24 1.11630 2.24 1.11318 2.25 
1.70 1.46686 1.70 1.46277 1.71 
0.97 2.56689 0.97 2.55973 0.98 
0.85 2.94684 0.85 2.93862 0.85 
1.41 2.47995 1.41 2.47303 1.42 
2.16 1.61741 2.16 1.61290 2.17 
1.78 1.96501 1.78 1.95953 1.79 
1.62 2.16093 1.62 2.15490 1.62 
1.54 2.26653 1.54 2.26020 1.55 
1.38 2.53609 1.38 2.52902 1.38 

ZETA ZETA 

1.11 1.32856 1.13 1.30295 1.15 
1.66 1.48687 1.68 1.45820 1.71 
1.45 1.69916 1.47 1.66640 1.5C 
1.46 1.68672 1.48 1.65420 1.51 



www.manaraa.com

TABLE 1. (CCNT.) 

NHt R = 2.0000 

N ATOM 
AC NLM ZETA <rN> 

1 ICO 6.23062 0.24 
2 2Cu 6.99118 0.36 
3 21C 7.51343 0.33 
4 211 7.07458 0.35 
5 2C0 1.13570 2.20 
6 200 2.01968 1.24 
7 21C 1.11112 2.25 
8 211 1.46006 1.71 
9 210 2.55499 0.98 
10 211 2.93317 0.85 
11 3C0 2.46845 1.42 
12 310 1.60990 2.17 
13 311 1.95590 1.79 
14 320 2.15090 1.63 
15 321 2.25601 1.55 
16 322 2.52433 1.39 

H ATOM 
AO NLM ZETA <r„> ri 

17 100 1.27847 1.17 
18 200 1.43081 1.75 
19 210 1.63509 1.53 
20 211 1.62312 1.54 

NH, R = 

ZETA 

6.23046 
6.99100 
7.51323 
7.07440 
1.13119 
2.01166 
1.10671 
1.45426 
2.54484 
2.92152 
2.45864 
1.60351 
1.94813 
2.14236 
2.24705 
2.51430 

ZETA 

1.24806 
1.39677 
1.59620 
1.58452 

.0500 NH, R = 2.1CCC NITROGEN ATGK 

ZETA ZETA 

0.24 6.22793 0.24 5.98635 0.25 
0.36 6.98816 0.36 7.20686 0.35 
C.33 7.51018 0.33 7.56232 0.33 
0.35 7.07153 0.35 7.56232 0.33 
2.21 1.12874 2.21 0.95092 2.63 
1.24 2.00730 1.25 2.04691 1.22 
2.26 1.10431 2.26 1.01464 2.46 
1.72 1.45111 1.72 lé01464 2.46 
0.98 2.53932 0.98 1.93575 1.29 
0.86 2.91519 0.86 1.93575 1.29 
1.42 2.45331 1.43 2.68240 1.3C 
2.18 1.60003 2.19 2.58502 1.35 
1.80 1.94391 1.80 2.58502 1.35 
1.63 2.13772 1.64 2.50539 1.40 
1.56 2.24218 1.56 2.50539 1.40 
1.39 2.50885 1.40 2.50539 1.40 

<rjj> ZETA <r̂ > 

1.20 1.21692 1.23 
1.79 1.36193 1.84 
1.57 1.55638 1.61 
1.58 1.54499 1.62 
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TABLE 2 D MATRICES AND OCCUPATION COEFFICIENTS FOR NH 

NH, R = 1.8000 BOHRS 

K SHELL K SHELL 
AO 1 SIGMA 1 2 SIGMA 2 

1 1.11481 -2.30521 
2 -0.13851 2.81536 
3 -0.00003 0.00069 
4 0.0 0.0 
5 0.01082 0.47548 
6 0.07319 -1.09783 
7 -0.00553 -0.04861 
8 0.0 0.0 
9 -0.00027 -0.00435 
10 0.0 0.0 
11 -0.04843 0.03560 
12 0.01177 -0.08651 
13 0.0 0.0 
14 0.00453 -0.05427 
15 0.0 0.0 
16 0.0 0.0 
17 -0.00831 0.06768 
18 -0.01345 0.17028 
19 -0.01121 0.06615 
20 0.0 0.0 

OC 0.99982 -0.01119 

K SHELL K SHELL LONE PAIR LONE PAIR LONE PAIR 
3 PI 1 4 SIGMA 3 1 SIGMA 1 2 SIGMA 2 3 DELTA 1 

0.0 -0.02122 -0.24635 0.20111 0.0 
0.0 0.02476 -0.02527 0.03811 0.0 
0.0 1.27782 -0.00771 -0.01876 0.0 
1.45803 0.0 0.0 0.0 0.0 
0.0 -0.04558 0.16290 1.51718 0.0 
0.0 -0.13762 1.03063 -1.77507 0.0 
0.0 -2.14106 -0.14037 -0.23655 0.0 
1.48166 0.0 0.0 0.0 0.0 
0.0 -0.83431 -0.11081 0.31966 0.0 
0.96117 0.0 0.0 0.0 0.0 
0.0 -0.01277 -0.09353 0.17590 0.0 
0.0 2.42947 0.04648 -0.18977 0.0 
1.78797 0.0 0.0 0.0 0.0 
0.0 -0.04650 0.02090 -0.11851 0.0 
0-05737 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 1.00000 
0.0 -0.10508 0.02646 -0.26391 0.0 
0.0 0.26643 -0.11431 0.45492 0.0 
0.0 0.16464 -0.01170 0.2-1182 0.0 
0.05523 0.0 0.0 0.0 0.0 

0.00871 —0.00860 0.99926 -0.03187 -0.01243 
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T A B L E  2 .  ( C O N T à )  

NH» R = 1.8000 BOHRS 

LONE PAIR LONE PAIR BONDING 
AO 4 PI 1 5 SIGMA 3 1 SIGMA 1 

1 0.0 -1.46501 -0.03330 
2 0.0 3.17478 -0.00456 
3 0*0 -0.01417 0.01118 
4 0.0 5744 0.0 0.0 
5 0.0 -0.94972 -0.09435 
6 0.0 -11.00612 0.07960 
7 0.0 0.07280 0.02968 
8 6.79164 0.0 0.0 
9 0.0 -0.00896 0.42991 
10 -1.37147 0.0 0.0 
11 0.0 11.48753 -0.00468 
12 0.0 0.30002 0.30141 
13 -5.38810 0.0 0.0 
14 0.0 0.18726 0.05220 
15 1.08328 0.0 0.0 
16 0.0 0.0 0.0 
17 0.0 -0.30593 0.45451 
18 0.0 -0.32325 -0.00661 
19 0.0 -0.05192 0.02424 
20 -0.9 5124 0.0 0.0 

OC -0.00872 -0.00114 0.99540 

BONDING BONDING BONDING BONDING 
SIGMA 2 3 PI 1 4 SIGMA 3 5 SIGMA 4 

0.06392 O.C 0.0%624 0.04603 
0.03066 O.C 0.00125 -0.05647 
0.02684 0.0 -0.01326 0.02917 

. 0.0 0.00801 0.0 0.0 
-0.17010 0.0 0.48616 0.70175 
-0.72858 0.0 -0.14800 0.04300 
0.12461 0.0 2.68907 0.49728 
0.0 3.96919 0.0 G.O 
-0.85624 0.0 -0.94400 -0.23369 
0.0 -0.71620 0.0 0.0 
-0.00842 0.0 0.00328 —0.08616 
-0.42480 O.C -1.28640 0.39236 
0.0 -3.03523 0.0 0.0 
-0.11521 O.C -0.16779 1.25953 
0.0 -0.35858 0.0 0.0 
0.0 0.0 0.0 0.0 
1.26270 0.0 -0.95639 -1.47015 
0.19163 0.0 0.31227 0.18622 
0.11378 0.0 0.12202 0.11517 
0.0 -0.85577 0.0 0.0 

-0.08124 -0.02783 -0.02865 -0 .01016 
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T A B L E  2 .  ( C C N T . )  

NH, R = 1,8000 ROHRS 

BONDING BONDING BONDING 
AG 6 SIGMA 5 7 SIGMA 6 8 SIGMA 7 

1 -0.11231 0.02199 0.16423 
2 0.18304 0.01818 -0.86900 
3 -0.12313 -0.02013 0.12739 
4 0.0 0.0 0.0 
5 -2.29872 0.65089 -2.77691 
6 -1.13699 -0.10361 2.51158 
7 -4.12430 -7.86602 2.22671 
8 0.0 0.0 0.0 
9 0.78104 0.24962 -0.85232 
10 0.0 0.0 0.0 
11 1.55509 0.21530 -5.16117 
12 2.26518 8.48796 -5.57010 
13 0.0 0.0 0.0 
14 -0.26377 C.24221 -1.49115 
15 0.0 0.0 0.0 
16 0.0 0.0 0.0 
17 -1.88655 -0.52031 0.98412 
18 4.18992 -0.65129 5.41730 
19 -0.08810 -0.07760 2.93385 
2C 0.0 0.0 0.0 

OC -0.00811 -0.00574 -0.00368 

TRIPLET TRIPLET TRIPLET 
1 PI 1 2 PI 2 3 PI 3 

0.0 0.0 0.0 
0.0 o.c 0.0 
0.0 0.0 0.0 
0.00886 0.14383 -0.35575 
0.0 C.C 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
1.02643 2.11977 14.85654 
0.0 O.C 0.0 
0.26052 -1.67094 -1.70984 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.25553 -0.79042 -13.90383 
0.0 0.0 0.0 
0.02729 -0.15834 -0.32112 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.01876 0.14874 0.51316 

0.99930 -0.C3741 -0.0C175 
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T A B L E  2 .  ( C C N T . )  

NH, R = 1.9000 BOHRS 

LONE PAIR LONE PAIR BONDING 
AO 4 PI 1 5 SIGMA 3 1 SIGMA 1 

1 0.0 -1.45778 -0.03173 
2 OiO 3.13201 -0.00819 
3 0.0 -0.00797 0.01100 
4 0106331 0.0 0.0 
5 0.0 -1.01076 -0.12053 
6 0.0 -10.88193 0.09613 
7 0.0 0.03049 0.03052 
8 6*83517 0.0 0.0 
9 0.0 -0.01818 0.43826 
10 -1.39356 0.0 0.0 
11 0.0 11.33929 -0.02011 
12 0.0 0.26122 0.27096 
13 -5.43039 0.0 0.0 
14 0.0 0.15082 0.04616 
15 1.06673 0.0 0.0 
16 0.0 0.0 0.0 
17 0.0 -0.30870 0.46603 
18 0.0 -0.16791 0.02267 
19 0.0 -0.05242 0.03291 
20 -0.93933 0.0 0.0 

OC -0i0C894 -0.00116 0.99442 

BONDING BONDING 
; SIGMA 2 3 PI 1 

0.06988 O.C 
0.03056 0.0 
0.00810 0.0 
0.0 0.01389 
-0.13135 0.0 
-0.69513 0.0 
0.10662 0.0 
0.0 3.99153 
-0.79520 0.0 
0.0 -0.73454 
0.08098 0.0 
-0.33412 0.0 
0.0 -3.04957 
-0.06210 0.0 
0.0 -0.36529 
0.0 0.0 
1.20978 0.0 
0.05269 0.0 
0.04459 0.0 
0.0 -0.86192 

BONDING BONDING 
4 SIGMA 3 5 SIGMA 4 

0. 00869 0.04385 
0. 00979 -0.05035 
-0. 01280 0.03884 
0. 0 0.0 
0. 63978 0.76431 
-0. 14605 0.03853 
2. 75446 0.54568 
0. 0 0.0 
-0. 95418 -0.26620 
0. 0 0.0 
0. 05671 -0.10780 
— 1. 19299 0.38372 
0. 0 0.0 
-0. 11721 1.25269 
0. 0 0.0 
0. 0 0.0 
-1. 00486 -1.47090 
0. 10233 0.15497 
0. 02316 0.06560 
0. 0 0.0 

-0.09267 -0.02788 -0.02740 -0.01063 
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T A B L E  2 .  ( C O N T . )  

NH, R = 1.9C00 BOHRS 

BONDING BONDING BONDING 
AO 6 SIGMA 5 7 SIGMA 6 8 SIGMA 7 

1 -0.11444 0.01530 0.17761 
2 0.18676 0.01372 -0.84477 
3 -0.12481 -0.01518 0.07740 
4 0.0 0.0 0.0 
5 -2.48846 0.49395 -2.94773 
6 -1.13990 -0.11082 2.61537 
7 -4*42627 -7.95990 1.97148 
8 OiO 0.0 0.0 
9 C.83417 0.24371 -0.62837 
IC 0.0 0.0 0.0 
11 1*65865 0.13091 -4.85796 
12 2i47752 8.39052 -5.28820 
13 0.0 0.0 0.0 
14 -0i27013 0.16651 -1.40439 
15 0.0 0.0 0.0 
16 0.0 0.0 0.0 
17 -1.87874 -0.54554 0.97659 
18 4.31435 -0.29141 5.09748 
19 -0.02788 -0.05100 2.93583 
2C 0.0 0.0 0.0 

OC -0.00803 -0.00600 -0.00370 

TRIPLET TRIPLET TRIPLET 
1 PI 1 2 PI 2 3 PI 3 

0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.01247 0.13990 -0.34632 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
1.01528 2.13583 14.89249 
0.0 0.0 0.0 
0.26012 -1.67070 -1.72999 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.24716 -0.79578 -13.89723 
0.0 0.0 0.0 
0.02552 -0.14991 -0.29049 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.02395 c.13052 0.45529 

0.99926 -0.03831 -0.00179 
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TABLE 2. (CONT.) 

NH, R = 1.9230 BOHRS 

LONE PAIR LONE PAIR BONDING 
AO 4 PI 1 5 SIGMA 3 1 SIGMA 1 

1 0.0 -1.45751 -0.03163 
2 0.0  3.12625 -0.00899 
3 0.0 —0.00636 0.01051 
4 0.06448 0.0 0.0 
5 0.0  -1.03014 -0.12850 
6 0.0 -10.86444 0.09894 
7 0.0 0.01655 0.03079 
8 6.84977 0.0 0.0 
9 0.0  -0.01976 0.44072 
10 -1.39935 0.0 0.0 
11 0.0 11.31311 -0.02276 
12 0.0 0.25119 0.26250 
13 -5.44320 0.0 0.0 
14 0.0 0.14080 0.04455 
15 1.06313 0.0 0.0 
16 o;o 0.0 0.0 
17 0.0 -0.30880 0.46935 
18 0.0 -0.12468 0.03073 
19 0.0 -0.04837 0.03617 
20 -0.93765 0.0 0.0 

OC -0.00899 -0.00116 0.99418 

BONDING 
SIGMA 2 

BONDING 
3 PI 1 

BONDING BONDING 
4 SIGMA 3 5 SIGMA 4 

0.07050 0.0 0.00883 0.04314 
0.03142 0.0 0.01263 -C.04858 
0.00471 0.0 -0.01197 0.04122 
0.0 0.01484 0.0 0.0 
-0.12280 0.0 0.68545 0.78367 
-0.69117 o.c -0.14797 0.03775 
0.10384 0.0 2.77861 0.56101 
0.0 4.00163 0.0 0.0 
-0.78352 0.0 -0.95951 -0.27429 
0.0 -0.73905 0.0 0.0 
0.ICI04 0.0 0.06898 -0.11364 
-0.31576 0.0 -1.17323 0.38068 
0.0 -3.05705 0.0 0.0 
-0.05066 0.0 -0.10407 1.25181 
0.0 -0.36687 0.0 0.0 
0.0 0.0 0.0 0.0 
1.19968 0.0 -1.01894 -1.47334 
0.02374 0.0 0.04779 0.14548 
0.02984 o.c -0.00400 0.05257 
0.0 -0.86391 0.0 0.0 

-0.09529 -0.02789 -0.02706 -0.01075 
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TABLE 2. (CONT.) 

NH, R = 1.9230 BOHRS 

BONDING BONDING BONDING 
AO 6 SIGMA 5 7 SIGMA 6 8 SIGMA 7 

1 -0.11553 0.01338 0.17988 
2 0.18855 0.01322 -0.83974 
3 -0.12526 -0.01394 0.06614 
4 0.0 0.0 0.0 
5 -2.54411 0.44811 -2.99891 
6 -1.14469 -0.11286 2.63434 
7 -4.51104 -7.99732 1.90812 
8 0.0 0.0 0.0 
9 0.84894 0.24531 -0.57739 
10 0.0 0.0 0.0 
11 1*68978 0.11514 -4.78546 
12 2.53692 8.37689 -5.22174 
13 0.0 0.0 0.0 
14 -0.27127 0.14783 -1.38292 
15 0.0 0.0 0.0 
16 0.0 0.0 0.0 
17 -1.87489 -0.55256 0.98390 
18 4.35084 -0.19857 5.02816 
19 -0.01019 -0.04140 2.94138 
20 0.0 0.0 0.0 

OC -0.00801 -0.00606 -0.00369 

TRIPLET TRIPLET TRIPLET 
1 PI 1 2 PI 2 3 PI 3 

0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.01287 0.13939 -0.34478 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
1.01586 2.14061 14.90615 
0.0 0.0 0.0 
0.25970 -1.67143 -1.73518 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.24802 -0.79786 -13.90064 
0.0 0.0 0.0 
0.02501 -0.14810 -0.28319 
0.0 0.0 0.0 
0.0 O.G 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.02517 0.12608 0.44123 

0.99926 -0.03847 -0 .00180  
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TABLE 2. (CDNT.) 

NH, R = 1.9614 BOHRS 

K SHELL K SHELL K SHELL 
AD 1 SIGMA 1 2 SIGMA 2 3 PI 1 

1 1.11677 -2.29456 0-0 
2 -0.14437 2.80071 0.0 
3  0.00074 -0.00430 0.0 
4 0.0 0.0 1.44299 
5 0.00183 0.54368 0.0 
6 0.08975 -1.05704 0.0 
7 Oé00344 -0.02277 0.0 
8 0,0 0.0 -1.49870 
9 -0.00375 0.01134 0.0 
10 0.0 0.0 -0.93880 
11 -0.07626 0.06742 0.0 
12 -0.01039 -0.02566 0.0 
13 0.0 0.0 1.79971 
14 -0.00175 -0.01675 0.0 
15 0.0 0.0 -0.05396 
16 0.0 0.0 0.0 
17 0.00038 0.03667 0.0 
18 0.00300 0.03585 0.0 
19 Oi.00286 0.01567 0.0 
20 0.0 0.0 0.04762 

OC 0.99982 -0.01128 -0.00873 

K SHELL 
4 SIGMA 3 

LONE PAIR 
1 SIGMA 1 

LONE PAIR 
2 SIGMA 2 

LONE PAIR 
3 DELTA 1 

-0.01664 -0.24614 0.20760 0.0 
0.02228 -0.G2546 0.04631 0.0 
1.26040 -0.GO49C -0.02319 0.0 
0. 0  0 . 0  0.0 0.0 
-0.06710 0.13714 1.71787 0.0 
-0.10752 1.04121 -1.76249 0.0 
-2.20344 -0.11706 -0.18192 0.0 
0.0 0.0 0.0 0.0 
-0.78142 -0.12036 0.33995 0.0 
0.0 0.0 0.0 0. 0  
0.03021 -0.14303 0.30144 0.0 
2.49011 -0.02150 -0.02126 0.0 
0.0 0 . 0  0.0 0.0 
-0.03261 -0.00020 -0.03524 0.0 
0.0 0 . 0  0.0 0.0 
0.0 0 . 0  0.0 1.00000 
-0.17347 0.05199 -0.33717 0.0 
0.28582 -0.05811 0.12729 0.0 
0.10229 0.C1268 0.04094 0.0 
0.0 0.0 0.0 0.0 

-0.00863 0.99923 -0.03259 -0.01254 
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TABLE 2. (CONT.) 

NH, R = 1.9614 BOHRS 

LONE PAIR LONE PAIR BONDING 
AO 4 PI 1 5 SIGMA 3 1 SIGMA 1 

1 0.0 -1.45500 -0.03101 
2 0.0 3.11093 -0.01000 
3 0̂ 0 -0.00415 0.01039 
4 0.06666 0.0 0.0 
5 O.C -1.06389 -0.13965 
6 0.0 -10.81909 0.10414 
7 Oi.0 -0.00709 0.02805 
8 6.86737 0.0 0.0 
9 0.0 -0.02173 0.44459 
10 -1.40703 0.0 0.0 
11 0.0 11.25689 -0.02626 
12 0.0 0.23557 0.25380 
13 -5i46150 0.0 0.0 
14 0.0 0.12473 0.04272 
15 1.05675 0.0 0.0 
16 0.0 0.0 0.0 
17 0.0 -0.30403 0.47371 
18 0.0 -0.05903 0.04157 
19 0.0 -0.03905 0.04030 
20 -0.93267 0.0 0.0 

OC -0.00907 -0.00117 0.99377 

BONDING 
2 SIGMA 2 

BONDING BONDING BONDING 
3 PI 1 4 SIGMA 3 5 SIGMA 4 

0.07228 O.C 0.00944 0.04242 
0.03155 0.0 0.01519 -0.04700 
-0.00089 0.0 -0.01069 0.04483 
0.0 0.01753 0.0 0.0 
-0.10495 0.0 0.74746 0.80684 
-0.68431 0.0 -0.14856 G.03781 
0.10049 O.C 2.81653 C.58233 
0.0 4.00760 0.0 0.0 
-0.76612 0.0 -0.96908 -0.28716 
0.0 -0.74604 0.0 0.0 
0.13117 0.0 0.07776 -0.12686 
-0.28523 0.0 -1.15424 0.37174 
0.0 -3.06031 0.0 0.0 
-0.03259 0.0 -0.08855 1.24794 
0.0 -0.36947 0.0 0.0 
0.0 0.0 0.0 0.0 
1.18068 0.0 -1.03654 -1.47240 
—0.02166 0.0 -0.02062 G.13730 
0.0C473 0.0 -0.04093 0.03522 
0.0 -0.86632 0.0 0.0 

-0.09961 -C.02787 -0.02652 -0.01091 
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TABLE 2. (CCNT.) 

NH, R = 1.9614 BOHRS 

BONDING BONDING BONDING 
AO 6 SIGMA 5 7 SIGMA 6 8 SIGMA 7 

1 -0.11633 0.01114 0.18430 
2 0.19059 0.01177 -0.83002 
3 -0.12579 -0.01295 0.04875 
4 0.0 0.0 0.0 
5 -2.61549 0.37652 -3.04732 
6 -1;14911 -0.11452 2.65584 
7 -4.63231 -8.06014 1.82439 
8 0.0 OoO 0.0 
9 Ci86951 0.25012 -0.50200 
10 0.0 0.0 0.0 
11 1*73562 0.09399 —4.66060 
12 2.62778 8.36312 -5.11457 
13 0.0 0.0 0.0 
14 -0;27298 0.12043 -1.34847 
15 0.0 0.0 0.0 
16 0.0 0.0 0.0 
17 -1.86970 -0.55694 0.97646 
18 4.39072 -0.06698 4.90337 
19 C.01376 -0.02686 2.93581 
20 0.0 0.0 0.0 

OC -0.00797 -0.00617 -0.00369 

TRIPLET TRIPLET TRIPLET 
1 PI 1 2 PI 2 3 PI 3 

0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.01439 0.13848 -0.34108 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
1.00677 2.14703 14.93053 
0.0 0.0 0.0 
0.26055 -1.67177 -1.74504 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.24048 -0.80037 -13.90741 
0.0 0.0 0.0 
0.02481 -0.14540 -0.27282 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.02653 0.12050 0.41972 

0.99925 -0.03875 -0 .00182 
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TABLE 2. (CCNT.) 

NH, R = 2.0CG0 BOHRS 

K SHELL K SHELL K SHELL 
AO 1 SIGMA 1 2 SIGMA 2 3 PI 1 

1 1.11738 -2.29295 0.0 
2 -0.14583 2.79916 0.0 
3 0.00074 -0.00497 0.0 
4 0.0 0.0 1.44110 
5 -0.0C036 0.56268 0.0 
6 0.09402 -1.05258 0.0 
7 0.00590 -0.01318 0.0 
8 0.0 0.0 -1.49801 
9 -0.00392 0.01251 0.0 
10 0.0 0.0 -0.93653 
11 -0*08224 0.07414 0.0 
12 -0.01561 -0.01475 0.0 
13 0.0 0.0 1.79908 
14 -0.00301 -0.00885 0.0 
15 0.0 0.0 -0.05341 
16 0.0 0.0 0.0 
17 0.00270 0.02889 0.0 
18 0.00540 0.00747 0.0 
19 0.00579 0.00293 0.0 
20 0.0 0.0 0.04604 

OC 0.99982 -0.01130 -0.00874 

K SHELL 
SIGMA 3 

LONE PAIR 
l SIGMA 1 

LONE PAIR 
2 SIGMA 2 

LONE PAIR 
3 DELTA 1 

-0.01584 -0.24598 0.2C870 0.0 
0.02210 -0.C2597 0.04845 0.0 
1.25796 -0.00440 -0.02292 0.0 
0.0 0.0 0.0 0.0 
-0.07285 0.12873 1.76957 0.0 
-0.10383 1.04446 -1.76362 0.0 
-2.22310 -0.11441 -0.15900 0.0 
0.0 0.0 0.0 0.0 
-0.77189 -0.12149 0.33820 €.0 
0.0 O.C 0.0 0.0 
0.04108 -0.15369 0.32113 0.0 
2.50861 -0.03551 0.00587 0.0 
0.0 0.0 0.0 0.0 
-0.03032 -0.00490 -0.01902 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 1.00000 
-0.18743 0.05804 -0.35319 0.0 
0.29298 -0.04422 0.06083 0.0 
0.08890 0.01984 0.00163 0.0 
0.0 0.0 0.0 0.0 

-0.00864 0.99923 -0.03263 -0.01256 
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TABLE 2. (CONT.) 

NH, R = 2.0C00 BOHRS 

LONE PAIR LONE PAIR BONDING 
AO 4 PI 1 5 SIGMA 3 1 SIGMA 1 

1 0.0 -1.45391 -0.03068 
2 0.0 3.10146 -0.01089 
3  0.0 -0.00197 0.00979 
4 0.06804 0.0 0.0 
5 0.0 -1.10271 -0.15189 
6 0.0 -10.79131 0.10808 
7 0.0 -0.03513 0.02375 
8 6i88929 0.0 0.0 
9 0.0 -0.02272 0.44885 
10 -1.41465 0.0 0.0 
11 0.0 11.21576 -0.02796 
12 Ci.0 0.22047 0.24671 
13 -5.48371 0.0 0.0 
14 0.0 0.10762 0.04077 
15 1.04983 0.0 0.0 
16 0.0 0.0 0.0 
17 G.O -0.29682 0.47818 
18 0.0 0.00959 0.05249 
19 0.0 -0.02627 0.04465 
20 -0.92755 0.0 0.0 

OC -0i00914 -0.00118 0.99335 

BONDING BONDING 
SIGMA 2 3 PI 1 

0.07389 0.0 
0.03245 o.p 
-0.00557 0.0 
0.0 0.01876 
-0.08344 0.0 
-0.68082 o.c 
0.09884 0.0 
0.0 4.02306 
-0.75094 0.0 
0.0 -0.75230 
0.16300 0.0 
-0.25327 0.0 
0.0 -3.07375 
-0.01389 0.0 
0.0 -0.37290 
0.0 0.0 
1.16077 0.0 
-0.06870 0.0 
-0.02193 0.0 
0.0 -0.86797 

BONDING BONDING 
4 SIGMA 3 5 SIGMA 4 

0.01009 0.04189 
0.01761 -0.04568 
-0.00871 0.C4851 
0.0 0.0 
0.81273 0.83026 
-0.14956 0.03854 
2.86220 0.60703 
0.0 0.0 
-0.98131 -0.30037 
0.0 0.0 
0.08233 -0.14243 
-1.14260 0.35843 
0.0 0.0 
-0.07383 1.24336 
0.0 0.0 
0.0 0.0 
-1.05433 -1.47012 
-0.08729 0.12985 
-0.07888 0.01779 
0.0 0.0 

-0.10388 -0.G2784 -0.02596 -0.01107 
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TABLE 2. (CONT.) 

NH, R = 2.0000 BOHRS 

BONDING BONDING BONDING 
AD 6 SIGMA 5 7 SIGMA 6 8 SIGMA 7 

1 -0.11718 0.00913 0.18868 
2 0.19356 0.01043 -0.82047 
3 -0èl2614 -0.01165 0.03171 
4 0.0 0.0 0.0 
5 -2.68709 0.29839 -3.08745 
6 -1.15682 -0.11651 2.67635 
7 -4i75855 -8.13568 1.74507 
8 0.0 0.0 0.0 
9 0*89020 0.25696 -0.42847 
10 0.0 0.0 0.0 
11 1.7 8732 0.07720 -4.53147 
12 2.72547 8.35899 -5.00349 
13 0.0 0.0 0.0 
14 -0.27430 0.09290 -1.31190 
15 0.0 0.0 0.0 
16 0.0 0.0 0.0 
17 -1*86359 -0.55950 0.96519 
18 4.42706 0.06616 4.77037 
19 0.0 3854 -0.01008 2.92613 
20 0.0 0.0 0.0 

OC -0.00792 -0.00629 -0.00369 

TRIPLET TRIPLET TRIPLET 
1 PI 1 2 PI 2 3 PI 3 

0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.01489 0.13779 -0.33880 
0.0 0.0 0.0 
0.0 O.C 0.0 
0.0 0.0 0.0 
1.00742 2.15454 14.95796 
0.0 0.0 0.0 
0.26017 -1.67289 -1.75428 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.24201 -0.80445 -13.91818 
0.0 0.0 0.0 
0.02379 -0.14335 -0.26222 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.02920 0.11515 0.39834 

0.99924 -0.03899 -0.00183 
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TABLE 2. (CONT.) 

NH, R = 2.0500 BOHRS 

K SHELL K SHELL K SHELL 
AO 1 SIGMA 1 2 SIGMA 2 3 PI 1 

1 1.11773 -2.29000 0.0 
2 -0.14702 2.79422 0.0 
3 0i00096 -0.00551 0.0 
4 0.0 0.0 1.43600 
5 -0.00332 0.58593 0.0 
6 0.09865 -1.04239 0.0 
7 0i0G736 -0.00033 0.0 
8 0.0 0.0 -1.49675 
9 -0.00436 0.01284 0.0 
10 OiO 0.0 -0.93019 
11 -0.08899 0.07758 0.0 
12 -0.02064 -0.00313 0.0 
13 0.0 0.0 1.79656 
14 -0.00452 0.00026 0.0 
15 0.0 0.0 -0.05298 
16 0.0 0.0 0.0 
17 0.00483 0.01917 0.0 
18 0.00906 -0.02478 0.0 
19 0.00957 -0.01283 0.0 
20 0.0 0.0 0.04468 

OC 0.99982 -0.01132 -0.00874 

K SHELL 
4 SIGMA 3 

LONE PAIR 
1 SIGMA 1 

LGNE PAIR 
2 SIGMA 2 

LONE PAIR 
3 DELTA 1 

-0.01512 -0.24596 
0.02176 -0.02507 
1.25356 -0.00385 
0.0 0.0 
-0.08090 0.11821 
-0.10029 1.04642 
-2.24865 -0.11280 
0.0 0.0 
-0.75907 -0.12234 
0.0 0.0 
0.05336 —0.16346 
2.53073 -0.05050 
0.0 0.0 
-0.02838 -0.01026 
0.0 0.0 
0.0 O.C 
-0.20283 0.06497 
0.30374 -0.02898 
0.07399 0.02818 
0.0 0.0 

0.21053 0.0 
0.04802 0.0 
-0.02172 0.0 
0.0 0.0 
1.83082 0.0 
-1.75919 0.0 
-0.12832 0.0 
0.0 0.0 
0.33312 0.0 
0.0 0.0 
0.33334 0.0 
0.03176 0.0 
0.0 0.0 
-0.00163 0.0 
0.0 0.0 
0.0 1.00000 
-0.37157 0.0 
-0.01068 0.0 
-0.04312 0.0 
0.0 0.0 

-0.00865 C.99922 -0.03266 -0.01259 
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T A B L E  2 .  ( C C N T . )  

NH,  R =  2 .0500  BOHRS 

LONE PAIR LONE PAIR BONDING 
AO 4  PI  1  5  SIGMA 3  1  SIGMA 1  

1  0 . 0  -1 .44903  -0 .02988  
2 0 .0  3 .07686  -0 .01215  
3 0 .0  0 .00039  0 .00971  
4  0 .06953  0 .0  0.0 
5  0 .0  -1 .15628  -0 .16629  
6 0 .0  -10 .71626  0 .11456  
7  0 .0  -0 .07351  0 .01729  
8  6 .91495  0 .0  0 .0  
9  OiO -0 .02260  0 .45396  

10 -1*42313  0 .0  0 .0  
11  0 .0  11 .13173  -0 .03069  
12  0 .0  0 .20259  0 .23991  
13  -5 .51022  0 .0  0 .0  
14  0 .0  0 .08599  0 .03898  
15  1 .04161  0 .0  0 .0  
16  0*0  0 .0  0 .0  
17  0 .0  -0 .28495  0 .48345  
18  0 .0  0 .09497  0 .06461  
19  0 .0  -0 .00520  0 .05003  
20 -0 .92133  0 .0  0 .0  

OC - 0 .00922  -0 .00119  0 .99279  

BONDING BONDING 
; S IGMA 2  3  PI  1  

0 .07614  0 .0  
0 .03167  0 .0  

-0 .01134  0 .0  
0 .0  0 .02033  

-0 .05790  0 .0  
—0.67364  0 . 0  

0 .09828  0 .0  
0 .0  4 .04084  

-0 .73476  0 .0  
0 .0  -0 .75956  
0 .19316  0 .0  

-0 .21903  0 .0  
0 .0  -3 .08945  
0 .00668  0 .0  
0 .0  -0 .37706  
0 .0  0 .0  
1 .13807  0 .0  

-0 .11870  0 .0  
-0 .05228  0 .0  
0 .0  -0 .86982  

-0 .10928  -0 .02778  

BONDING BONDING 
4  SIGMA 3  5  SIGMA 4  

0 .  01087  0 .04119  
0 .  01934  -0 .04449  

-0 .  00648  0 .05267  
0 .  0  0 .0  
0 .  88925  0 .85627  

— 0 .  14762  0 .04083  
2 .  92048  0 .63619  
0 .  0  0 .0  

—0.  99745  -0 .31605  
0 .  0  0 .0  
0 .  07875  -0 .16331  

— 1 .  13703  C .34057  
0 .  0  0 .0  

- 0 .  05873  1 .23715  
0 .  0  0 .0  
0 .  0  0 .0  

— 1 .  07432  -1 .46670  
—0.  15835  0 .12377  
- 0 .  12256  -0 .00159  

0 .  0  0 .0  

- 0 .  02527  -0 .01126  
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TABLE 2. (CGNT.) 

NH, R = 2.0500 BOHRS 

BONDING BONDING BONDING 
AO 6 SIGMA 5 7 SIGMA 6 8 SIGMA 7 

1 -0.11767 0.00684 0.19375 
2 0.19577 0.00874 -0.80711 
3 -0.12639 -0.01154 0.01223 
4 0.0 0.0 0.0 
5 -2i76881 0.20132 -3.12398 
6 -1&16184 -0.11704 2.68296 
7 -4.90782 -8.23678 1.65975 
8 0.0 0.0 0.0 
9 0.91437 0.26927 -0.34674 
10 0.0 0.0 0.0 
11 1&84613 0.06225 -4.36820 
12 2.84429 8.36491 -4.87329 
13 0.0 0.0 0.0 
14 -0127541 0.06124 -1.26800 
15 0.0 0.0 0.0 
16 0.0 0.0 0.0 
17 -1.85494 -0.55908 0.94878 
18 4.46360 0.21834 4.61109 
19 0.06768 0.01159 2.91037 
20 0.0 0.0 0.0 

OC -0.00786 -0.00644 -0.00368 

TRIPLET TRIPLET TRIPLET 
l PI 1 2 PI 2 3 PI 3 

0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.01621 0.13542 -0.33416 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
1.00721 2.16420 14.99152 
0.0 0.0 0.0 
0.25938 -1.67273 -1.76793 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.24272 -0.81093 -13.93117 
0.0 0.0 0.0 
0.02271 -0.14128 -0.25035 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.0 0.0 0.0 
0.03223 0.10956 0.37351 

0.99922 -0.03940 -0.0C184 
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TABLE 2. (CONT.) 

NH, R = 2.1000 BOHRS 

K SHELL K SHELL K SHELL 
AO 1 SIGMA 1 2 SIGMA 2 3 PI 1 

1 1.11850 -2.28801 0.0 
2 -Oi14871 2.79201 0.0 
3 0i00085 -0.00579 0.0 
4 0.0 0.0 1.43376 
5 -0100591 0.61424 0.0 
6 0.10384 -1.03618 0.0 
7 0.01019 0.01757 0.0 
8 0.0 0.0 -1.50439 
9 -0.00425 0.01191 0.0 
10 0.0 0.0 -0.92586 
11 -0i09541 0.08120 0.0 
12 -0.02656 0.00608 0.0 
13 0.0 0.0 1.80241 
14 -0.00580 0.00959 0.0 
15 0.0 0.0 -0.05266 
16 0.0 0.0 0.0 
17 0.00734 0.00955 0.0 
18 0.01101 -0.06024 0.0 
19 0.01280 -0.03088 0.0 
20 0.0 0.0 0.04388 

OC 0.99982 -0.01134 -0.00875 

K SHELL 
4 SIGMA 3 

LONE PAIR 
1 SIGMA 1 

LONE PAIR LONE PAIR 
2 SIGMA 2 3 DELTA 1 

-0.01419 -0.24556 0.21140 0.0 
0.02117 -0.02590 0.05039 0.0 
1.25113 -0.C0371 -0.02000 0.0 
0.0 0.0 0.0 0.0 
-0.09083 0.10824 1.90447 0.0 
-0.09612 1.05207 -1.76063 0.0 
-2.27942 -0.10984 -0.08703 0.0 
0.0 0.0 0.0 0.0 
—0.74816 -0.12218 0.32470 0.0 
0.0 0.0 0.0 0.0 
0.06536 -0.17494 0.34622 0.0 
2.55741 -0.06618 0.05458 c.o 
0.0 0.0 0.0 0.0 
-0.02681 -0.01505 0.01681 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 1.00000 
-0.21734 0.07195 -0.39217 0.0 
0.31668 -0.01602 -0.08897 0.0 
0.05937 0.03592 -0.09395 0.0 
0.0 0.0 0.0 0.0 

—0 «00865 0.99922 -0.03263 -0.01262 
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TABLE 2. (CONT.) 

NH,  R =  2 . I  COO BOHRS 

LONE PAIR LONE PAIR BONDING 
AO 4  PI  1  5  SIGMA 3  1  SIGMA 1  

1  0 . 0  -1 .44757  -0 .02930  
2  0 . 0  3 .06427  -0 .01328  
3  0 . 0  0 .00262  0 .00881  
4  0é07133  0 .0  0 .0  
5  0 . 0  -1 .22187  -0 .18309  
6  0 .0  -10 .67623  0 .11967  
7  0 .0  -0 .12317  0 .01049  
8  6*94577  0 .0  0 .0  
9  OiO -0 .01973  0 .46026  

IC  -1^43269  0 .0  0 .0  
11  0 .0  11 .07890  -0 .03113  
12  0 .0  0 .18686  0 .23213  
13  -5 .54132  0 .0  0 .0  
14  0 .0  0 .06221  0 .03727  
15  1 .03324  0 .0  0 .0  
16  0 .0  0 .0  0 .0  
17  OéO -0 .27096  0 .48969  
18  0 .0  0 .19054  0 .07722  
19  0 .0  0 .02276  0 .05666  
20  -0 .91547  0 .0  0 .0  

OC - 0 .00932  -0 .00120  0 .99221  

BONDING 
SIGMA 2  

BONDING 
3  PI  1  

BONDING 
4  SIGMA 3  

BONDING 
5  SIGMA 4  

0 .07748  O.C 
0 .03265  0 .0  

-0 .01573  0 .0  
0 .0  0 .02246  

-0 .03085  O.C 
-0 .67162  0 .0  

0 .09923  0 .0  
0 .0  4 .05892  

-0 .72096  0 .0  
0 .0  -0 .76792  
0 .22483  0 .0  

-0 .18572  0 .0  
0 .0  —3.10446  
0 .02721  0 .0  
0 .0  -0 .38118  
0 .0  0 .0  
1 .11610  0 .0  

-0 .16733  0 .0  
-0 .08293  0 .0  

0 .0  -0 .87270  

-0 .11458  -0 .02771  

0 .  01132  0 .04044  
0 .  02184  -0 .04322  

- 0 .  00288  0 .05730  
0 .  0  0 . 0  
0 .  98041  0 .88866  

- 0 .  14686  0 .04480  
2 .  99397  0 .67253  
0 .  0  6 .0  

— 1 .  01845  -0 .33319  
0 .  0  0 . 0  
0 .  07088  -0 .18818  

- 1 .  13787  0 .31850  
0 .  0  0 .0  

- 0 .  04244  1 .23105  
0 .  0  0 .0  
0 .  0  0 .0  

- 1 .  09873  -1 .46507  
- 0 .  23546  0 .11565  
- 0 .  17250  -0 .02324  

0 .  0  0 .0  

-0 .02452  -0 .01145  
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TABLE 2. (CCNT.) 

NH,  R =  2 . 1000  BOHRS 

BONDING BONDING BONDING 
AO 6  SIGMA 5  7  SIGMA 6  8  SIGMA 7  

1  -0 .11899  0 .00417  0 .19806  
2  0 .20018  0 .00785  -0 .79464  
3  -0 .12675  -0 .01079  -0 .00721  
4  0 .0  0 .0  0 .0  
5  - 2 .86439  0 .08650  -3 .16746  
6  -1 .17558  -0 .11988  2 .68951  
7  -5é07857  -8 .36679  1 .57191  
8  040  0 .0  0 .0  
9  0 .94197  0 .28607  -0 .26458  

10  0 .0  0 .0  0 .0  
11  1 .92049  0 .05564  -4 .19995  
12  2»98157  8 .38839  -4 .73655  
13  0 .0  0 .0  0 .0  
14  -0 .27556  0 .02750  -1 .22001  
15  0 .0  0 .0  0 .0  
16  0 .0  0 .0  0 .0  
17  -1 .84225  -0 .55707  0 .93882  
18  4 .50409  0 .38474  4 .44547  
19  0 .10162  0 .03955  2 .89623  
20  0 ,0  0 .0  0 .0  

OC - 0 .00780  —0.00661  -0 .00367  

TRIPLET TRIPLET TRIPLET 
1  PI  1  2  PI  2  3  PI  3  

0 . 0  0 .0  0 .0  
0 .0  0 .0  0 .0  
0 .0  0 .0  0 .0  
0 .01713  0 .13491  -0 .33095  
0 .0  C.G 0 .0  
0 .0  0 .0  0 .0  
0 .0  0 .0  0 .0  
1 .00287  2 .17446  15 .03946  
0 .0  0 .0  0 .0  
0 .25981  -1 .67441  -1 .78239  
0 .0  0 .0  0 .0  
0 .0  0 .0  0 .0  
0 .23981  -0 .81684  -13 .95638  
0 .0  0 .0  0 .0  
0 .02206  -0 .13896  -0 .23831  
0 .0  0 .0  0 .0  
0 .0  0 .0  0 .0  
0 .0  0 .0  0 .0  
0 .0  0 .0  0 .0  
0 .03461  0 .10370  0 .34667  

0 .99921  -0 .03966  -0.00186 
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TABLE 3 .  D MATRIX AND OCCUPATION COEFFICIENTS FOR NITROGEN 

K K K L L 
AO 1 S 1 2 3 2 3 P 1 1 S 1 2 0 1 

1 1.20416 -2.74018 0.0 -0.21523 0. 0  

2 -0.20030 3.31292 0.0 -0.02030 0.0 
3  0.0 0.0 -1.46320 0.0 0.0 
5 0.00164 -0.06637 0.0 0.09135 o.c 
6 -0.12799 -1.95653 0.0 1.08466 0. 0  

7 0 .0  0.0 -0.21587 0.0 0 .0  
9 0.0 0.0 4.14811 0.0 0.0 
II 0.07832 1.54725 0.0 -0.10646 0.0 
12 0.0 0.0 -3.48826 0.0 0.0 
14 0. 0  0.0 0 .0  0.0 1.00000 

OC 0.99979 -0.01156 -0.00980 0.99946 -0.01326 

L L L L Q 
AO 3 P 1 4 S 2 5 P 2 6 S 3 1 P 1 

1 0.0 -1.69779 0.0 -0.55715 0.0 
2 0.0 3.62446 0.0 1.61998 0.0 
3  0.19557 0.0 -1.25075 0.0 0.00996 
5  0.0 1.15624 0.0 -0.94765 0.0 
6 0 .0  -14.61596 0. 0  -9.48276 0.0 
7  1.61414 0.0 -0.33947 0.0 0.19905 
9  -1.47059 0.0 13.22597 0.0 1.29766 
11 0.0 12.97813 0.0 9 .82230  O.C 

12 0.02757 0.0 -12.69782 0.0 -0.46889 
14 0.0 0.0 0.0 0.0 0.0 

OC -0.00802 -0.00171 -0.00169 -0.00158 1.00000 
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TABLE 4 .  ENERGY DECOMPOSITION OF NH AS  A FUNCTION OF INTERNUCLEAR DISTANCE 

'NH 'N H 12 3E / 9R 

SEPARATED PAIR WAVE FUNCTION (ENERGIES IN  HARTREES)  

1.8000 
1.90C0 
1.923C 
1.9614 
2.0000 
2.0500 
2.1000 

3.8889 
3.6842 
3.6401 
3.5689 
3.5000 
3.4146 
3.3333 

-132.6091 
-132.2051 
-132.1306 
-131.9978 
-131.8668 
-131.6911 
-131.5561 

-4.9716 
-4.7414 
-4.6901 
-4.6085 
-4.5294 
-4.4299 
-4.3341 

23.3267 
23.0895 
23.0428 
22.9643 
22.8916 
22.7824 
22.7027 

55.3450 
55.1409 
55.1050 
55.0396 
54.9717 
54.8934 
54.8277 

55.02019 
•55.03178 
•55.03281 
•55.03352 
•55.03293 
•55.03047 
•55.02643 

-0.1804 
•0.0574 
-0.0375 
-0.0031 
0.0306 
0.0669 
0.0946 

PRINCIPAL NATURAL ORBITAL WAVE FUNCTION (ENERGIES IN  HARTREES)  

1.8000 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000 

3.8889 
3.6842 
3.6401 
3.5689 
3.5000 
3.4146 
3.3333 

-132.6166 
-132.2102 
-132.1354 
-132.0017 
-131.8698 
-131.6929 
-131.5571 

-4.9702 
-4.7392 
-4.6878 
-4.6059 
-4.5265 
—4.4266 
-4.3305 

23.4441 
23.2096 
23.1635 
23.0861 
23.0143 
22.9064 
22.8280 

55.2917 
55.0836 
55.0468 
54.9798 
54.9104 
54.8300 
54.7624 

-54.96207 
-54.97200 
-54.97269 
-54.97281 
-54.97166 
-54.96850 
-54.96381 

-0.1831 
-0.0587 
-0.0386 
-0.0036 
0.0306 
0.0676 
0.0959 

CORRELATION ENERGY (ENERGIES IN  EV)  

1.8000 
1.9000 
1.9230 
1.9614 
2.0000 
2.050C 
2.100C 

0.2041 
0.1401 
0.1295 
0.1067 
0.0808 
0.0501 
0.0258 

-0.0397 
-0.0593 
-0.0639 
-0.0716 
-0.0789 
-0.0887 
-0.0980 

-3.1941 
-3.2665 
-3.2842 
-3.3120 
-3.3381 
-3.3726 
-3.4083 

1.4484 
1.5591 
1.5828 
1.6250 
1.6690 
1.7251 
1.7765 

-1.5814 
—1.6266 
-1.6358 
-1.6519 
-1.6671 
-1 .6862 
-1.7039 
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TABLE 5 .  

E(HARTREE)  

COMPARISON 

R(BOHR)  

WITH PREVIOUS INVESTIGATIONS 

YEAR REFERENCE DESCRIPTION^ 

-53 .8215  

-54 .5409  

-54 .55581  

-54 ,68909  

-54 .7827  

1 .908  1956  HIGUCHI  ( 59 )  

2 . 0  1963  REEVES ( 64 )  

2 . 0  1965  REEVES AND 
FLETCHER (65 )  

1 .9614  1965  LOUNSBURY (67 )  

1 .9735  1963  BISHOP AND 
HOYLAND (66 )  

1 .9614  1958  BOYD (61 )  

APPROXIMATE LCAC-MO-SCF 
HARTREE-FOCK AO BASIS  SET 

GENERAL CI  ( 63  CONFIGURATIONS)  
EXTENDED GTF BASIS  SET 

GENERAL CI  ( 56  CONFIGURATIONS)  
EXTENDED GTF BASIS  SET 

ONE-CENTER LCAO-MO-SCF 
MINIMAL STAO BASIS  SET 

ONE-CENTER VB ( 1  CONFIGURATION)  
STAO BASIS  SET WITH NON-INTEGRAL 
QUANTUM NUMBERS 

LCAO-MO-SCF 
MINIMAL STAO BASIS  SET 

^HE ABBREVIATIONS USED ARE AS  FOLLOWS. . .  
LCAO-MO-SCF =  LINEAR COMBINATION OF ATOMIC ORBITALS -  MOLECULAR ORBITAL -  SELF 

CONSISTENT FIELD METHOD 
CI  =  CONFIGURATION INTERACTION 
VB =  VALENCE BOND METHOD 
GTF =  GAUSSIAN-TYPE FUNCTIONS 
STAC =  SLATER-TYPE ATOMIC ORBITALS 
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TABLE 5. (CCNT.) 

E(HARTREE)  R(BOHR)  

- 54 .785  1 -9614  

-54 .8C5  1 .9614  

-54 .810  1 .9614  

-54 .90638  1 .9  

-54 .97281  1 .9614  

-54 .97838  1 .923  

-55 .03352  1 .9614  

YEAR REFERENCE 

1958  KRAUSS ( 60 )  

1958  HURLEY (63 )  

1958  KRAUSS AND 
WEHNER ( 62 )  

1965  JOSHI  ( 68 )  

1968  THIS  WORK 

1967  CADE AND 
HUO ( 1 )  

1968  THIS  WORK 

DESCRIPTION 

LCAO-MO-SCF 
MINIMAL STAO BASIS  SET 

V8-CI  ( 5  CONFIGURATIONS)  
MINIMAL STAC BASIS  SET 

LCAO-MO-SCF-CI  ( 9  CONFIGURATIONS)  
MINIMAL STAO BASIS  SET 

ONE-CENTER LCAO-MO-SCF 
EXTENDED STAO BASIS  SET 

PRINCIPAL NATURAL ORBITAL -
SINGLE DETERMINANT OF THE 
SEPARATED PAIR APPROXIMATION 
EXTENDED STAO BASIS  SET 

LCAO-MO-SCF 
EXTENDED STAO BASIS  SET 

SEPARATED PAIR -  NATURAL ORBITAL 
EXTENDED STAO BASIS  SET 
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TABLE 6 -  GEMINAL ENERGY MATRICES 

NHt  R =  1 . 8000  

PNO MATRIX 

K L  B  T  
K - 45 .835451  
L 3 . 784619  -10 .804800  
B 3 . 114357  2 .097825  -9 .554925  
T 3 .689466  2 .387884  2 .229892  -9 .959823  

CCRR MATRIX 

K L  B  T  
K - 0 . 024126  
L - 0 .001687  -Oi .002214  
8  0 .000616  -0 .000607  -0 .024758  
T 0 .000448  -0 .000629  -0 .000715  -0 .004454  

NH,  R  =  1 . 9000  

PNO MATRIX 

K L  B  T  
K - 45 .777345  
L 3 . 752242  -10 .715599  
B 3 .065353  2 .061451  -9 .385478  
T  3 .664772  2^365469  2 .193017  -9 .880096  

CORR MATRIX 

K L  B  T  
K - 0 . 024156  
L - 0 .001726  -0 .002171  
B 0 .001069  -0 .000620  -0 .026629  
T 0 .000475  -0 .000645  -0 .000807  -0 .004566  



www.manaraa.com

105 

TABLE 6« CCONTi) 

NH, R = 1.9230 

PNO MATRIX 

K 
K -45.764578 
L 3.746647 
B 3.055536 
T 3.659789 

10.698150 
2.054294 
2.361335 

B 

•9.349793 
2.185497 -9.863417 

CORR MATRIX 

K 
L 
B 
T 

K 
-0.024159 
-0.001733 
0.001147 
0.000483 

-0.002162 
-0.000639 
-0.000646 

B 

-0.026969 
-0.000848 -0.004591 

NH, R = 1.9614 

PNO MATRIX 

K L 
K -45.743882 
L 3.735399 -10.665887 
B 3.039359 2.041575 
T 3.653257 2.354097 

B 

-9.290578 
2.173268 -9.838302 

CORR MATRIX 

K 
L 
B 
T 

K 
-0.024169 
-0.001739 
0.001288 
0.000486 

-0.002155 
-0.000664 
-0.000650 

B 

•0.027567 
•0.000917 -0.004617 
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TABLE 6. (CONT.) 

NH, R = 2.0000 

PNO MATRIX 

K -45.723962 
L 3.726333 
B 3.024169 
T 3.646089 

•10.637871 
2.030267 
2.347786 

B 

•9.233193 
2.161516 -9.812799 

CORR MATRIX 

K 
L 
B 
T 

K 
-0.024177 
-0.001740 
0.001427 
0.000497 

-0.002151 
-0.000694 
-0.000648 

B 

-0.028134 
-0.000994 -0.004654 

NH, R = 2.0500 

PNO MATRIX 

K 
K -45.699167 
L 3.711144 
B 3.003496 
T 3.633048 

10.595374 
2.013853 
2.336684 

B 

-9.157843 
2.144490 -9.773467 

CORR MATRIX 

K 
K -0.024195 
L -0.001739 
B 0.001594 
T 0.000517 

-0.002146 
-0.000741 
-0.000643 

B 

•0.028792 
-0.001105 -0.004718 
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TABLE 6. (CONT.) 

NH, R = 2.1000 

PNO MATRIX 

K L 
K -45.675284 
L 3.700843 -10.561372 
B 2.987248 2.000687 
T 3.626511 2.329884 

B 

•9.091361 
2.131402 -9.745705 

CORR MATRIX 

K 
K -0.024208 
L -0.001736 
8 0.001682 
T 0.000523 

-0.002146 
-0.000825 
-0.000640 

B 

-0.029254 
-0.001265 -0.004751 

NITROGEN ATOM 

PNO MATRIX 

K 
K -44.701701 
L 3.708872 
B 1.868965 
T 3.737930 

-9.915854 
1.197551 
2.395102 

-4.827409 
1.194688 -9.057473 

CORR MATRIX 

K L B T 
K -0.031333 
L -0.000679 -0.004676 
B -0.000022 -0.000060 0.0 
T -0.000045 -0.000119 0.0 0.0 
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TABLE 7. SECONDARY NATURAL ORBITAL CORRELATION ENERGY CONTRIBUTIONS 

NH, R = 1,9614 BOHRS 

NATURAL ORBITAL &E(wi,W0) AE(yi) û.i(yi) ACyi) oc 

K SHELL 2 SIGMA 2 -0.00980 -D.00972 -0.00008 -0.00980 —0. 01128 
K SHELL 3 PI 1 -0.00489 -0.00485 -0.00003 -0.00488 -0. 00873 
K SHELL 4 SIGMA 3 -0.00479 -0.00474 -0.00005 -0.00479 —0. 00863 

LONE PAIR 2 SIGMA 2 -0.00250 0.00010 -0.00261 -0.00251 —0. 03259 
LONE PAIR 3 DELTA 1 -0.00079 -0.00076 -0.00003 -0.00079 -0. 01254 
LONE PAIR 4 PI 1 -0.00045 -0.00034 -0.00011 -0.00045 —0. 00907 
LONE PAIR 5 SIGMA 3 -0.00005 -0.00005 0.0 -0.00005 -0. 00117 

BONDING 2 SIGMA 2 -0.01883 -0.02383 0.00472 -0.01911 -0. 09961 
BONDING 3 PI 1 -0.00234 -0.00099 -0.00137 -0.00236 -0. 02787 
BONDING 4 SIGMA 3 -0.00180 -0.00045 -0.00137 -0.00182 —0. 02652 
BONDING 5 SIGMA 4 -0.00074 -0.00079 0.00005 -0.00074 -0. 01091 
BONDING 6 SIGMA 5 -0.00045 -0.00026 -0.00C18 -0.00044 -0. 00797 
BONDING 7 SIGMA 6 -0.00017 -0.00009 -0.00008 -0.00017 -0. 00617 
BONDING 8 SIGMA 7 -0.00017 —0.00016 -0.00001 -0.00017 -0. 00369 

TRIPLET 2 PI 2 -0.00409 -0.00461 0.00052 -0.00409 —0. 03875 
TRIPLET 3 PI 3 -0.00002 -0.00001 -0.00001 -0.00002 —0. 00182 

TOTAL GAIN -0.06311 -0.00167 -0.06478 
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TABLE 7. (CONTi) 

NITROGEN ATOM 

NATURAL ORBITAL AECiiif yO) ûE(ui) M(ui) ui) OC 

K 2 S 2 -0.01160 -0.01154 -0.00006 -0.01160 -0.01156 
K 3 P 1 -0.00661 -0.00660 -0.00002 —0.00662 -0.00980 

L 2 D 1 -0.00088 -0.00083 -0.00005 -0.00G88 -0.01326 
L 3 P 1 -0.00023 -0.00004 -0.00019 -0.00023 -0.00802 
L 4 S 2 -0.00013 -0.00014 0.00001 -O.OOC13 -0.00171 
L 5 S 3 -0.00007 -0.00008 0.00001 -0.00007 -0.00169 
L 6 S 4 —0.00003 -0.00002 0.0 -0.00002 -0.00158 

TOTAL GAIN -0.03585 -0.00092 -0.03677 
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TABLE 8. PAIR CORRELATION ENERGIES FOR EACH GEMINAL OF NH AT R=1.9614 BOHRS 

PAIR CORRELATION OF THE K SHELL GEMINAL 

NATURAL ORBITAL AE(uifUO) AE(yi) ûMyi) û{ui) DC 

K SHELL 2 SIGMA 2 -0.00979 -0.00971 -C.00008 -0.00979 -0.01126 
K SHELL 3 PI 1 -0.00488 -0.00485 -0.00003 -0.00488 -0.00873 
K SHELL 4 SIGMA 3 -0.00479 -0.00474 -0.00005 -0.00479 -0.00862 

LONE PAIR 2 SIGMA 2 -0.00005 -0.00005 -0.0 -0.00005 -0.00124 
LONE PAIR 3 DELTA 1 -0.0 —0.0 -0.0 —C .0 -0.00008 
LONE PAIR 4 PI 1 -0.0 —0.0 —0.0 —0.0 -0.00005 
LONE PAIR 5 SIGMA 3 -0.00021 -0.00020 -0.0 -0.00020 -0.00175 

BONDING 2 SIGMA 2 -0.00004 -0.00004 —0.0 -0.00C04 -0.00108 
BONDING 3 PI 1 -0.0 -0.0 —0.0 —0.0 -0.00001 
BONDING 4 SIGMA 3 -0.00001 -0.00001 -0.0 -0.00001 -0.00045 
BONDING 5 SIGMA 4 —0.0 -0.0 -0.0 —0.0 -0.00006 
BONDING 6 SIGMA 5 -0.0 -0.0 —0.0 -0.0 -0.00006 
BONDING 7 SIGMA 6 -0.00002 -0.00002 -0.0 -0.00002 -0.00071 
BONDING 8 SIGMA 7 -0.0 -0.0 —0.0 -0.0 -0.00011 

TRIPLET 2 PI 2 -0.00008 -0.00007 —0.0 -0.00007 -0.00145 
TRIPLET 3 PI 3 -0.0 -0.0 -0.0 —0.0 -0.00013 

TOTAL GAIN -0.02460 0.C0025 -0.02484 
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TABLE 8. (CONT.) 

PAIR CORRELATION OF THE 

NATURAL ORBITAL AE(UifUO) ^E(yi) 

K SHELL 2 SIGMA 2 -0.00013 -0.00015 
K SHELL 3 PI 1 -0.00002 -0.00002 
K SHELL 4 SIGMA 3 -0.00002 -0.00002 

LONE PAIR 2 SIGMA 2 -0.00242 0.00002 
LONE PAIR 3 DELTA 1 -0.00077 -0.00075 
LONE PAIR 4 PI 1 -0.00043 -0.00033 
LONE PAIR 5 SIGMA 3 -0.00005 -0.00005 

BONDING 2 SIGMA 2 -0.00072 -0.00070 
BONDING 3 PI 1 -0.00014 -0.00007 
BONDING 4 SIGMA 3 -0.00012 -0.00002 
BONDING 5 SIGMA 4 -0.00066 -0.00059 
BONDING 6 SIGMA 5 -0.0 -0.0 
BONDING 7 SIGMA 6 -0.00007 -0.00002 
BONDING 8 SIGMA 7 -0.00001 -0.00001 

TRIPLET 2 PI 2 -0.00033 -0.00035 
TRIPLET 3 PI 3 -0.00003 -0.00002 

TOTAL GAIN -0.00461 

PAIR GEMINAL 

Al(yi) &{ yi) OC 

O.00C02 
0.0 
0.0 

-0.00013 
-0.00002 
-C.00C02 

-0.00149 
-0.00059 
-0.00064 

-0.00245 
-0.00003 
-0.00010 
0.0 

-0.00243 
-0.00078 
-0.00C43 
-0.00005 

-0.03158 
-0.01224 
-0.00868 
-0.00110 

-0.00003 
-0.00008 
-0.00010 
-0.00007 
-0.0 
-0.00005 
-0.0 

-0.00073 
-0.00015 
-0.00012 
-0.00066 
-0.0 
-0.00007 
-0.00001 

-0.01578 
-0.00587 
-0.00586 
-0̂ 01061 
-0.00017 
-0.00408 
-0.00092 

0.00003 
-0.00001 

-0.00032 
-0.00003 

-0.00896 
-0.00204 

-0.00305 -0.00766 
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TABLE 8 »  (CONTi) 

PAIR CORRELATION 

NATURAL ORBITAL AE(yitUO) 

K SHELL 2 SIGMA 2 -0.0 
K SHELL 3 PI 1 —0.0 
K SHELL 4 SIGMA 3 -0.00003 

LONE PAIR 2 SIGMA 2 -0.00013 
LONE PAIR 3 DELTA 1 -0.00002 
LONE PAIR 4 PI 1 -0.00027 
LONE PAIR 5 SIGMA 3 -6.00001 

BONDING 2 SIGMA 2 -0.01872 
BONDING 3 PI 1 -0.00231 
BONDING 4 SIGMA 3 -0.00178 
BONDING 5 SIGMA 4 -0.00074 
BONDING 6 SIGMA 5 -0.00045 
BONDING 7 SIGMA 6 -0.00016 
BONDING 8 SIGMA 7 -0.00017 

TRIPLET 2 PI 2 -0.00005 
TRIPLET 3 PI 3 -0.00001 

TOTAL GAIN 

OF THE BONDING GEMINAL 

ûE(yi) 

0.0 
0.0 
0.00003 

0.00007 
0.00002 
0.00025 
0.00001 

0.02367 
0.00099 
0.00046 
0.00079 
0.00026 
0.00009 
0.00016 

0.00006 
0.0 

0.02819 

M{yi) 

0.0 
0.0 
0.0 

-0.00006 
OéO 

-0.00001 
0.0 

0.00468 
-0.00134 
-0.00134 
0.00005 
-0.00018 
-0.00007 
-0.00001 

0.00001 
0.0 

0.00037 

A(ui) 

-0.0 
—0.0 
-0.00003 

-0.00013 
-0.00002 
-0.00026 
-O.OOCOl 

-0.01899 
-0.00233 
-0.00180 
-0.00074 
-0.00044 
-0*00016 
-0.00017 

-0.00005 
-0.0 

-0.02782 

OC 

-0.00019 
-0.00010 
-0.00075 

-0.00671 
-0.00142 
-0.00651 
-0.00032 

-0.09902 
-0.02756 
-0.02625 
-0.01082 
-0.00793 
-0*00604 
-0.00366 

-0.00297 
-0.00086 
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TABLE 8- (CONT.) 

PAIR CORRELATION OF THE TRIPLET GEMINAL 

NATURAL ORBITAL AE(uitUO) AE(yi) AKui) A( lii) 00 

K SHELL 3 PI 1 -0.00003 -0.00004 0.00001 -0.00C03 -0.00087 

LONE PAIR 3 DELTA 
LONE PAIR 4 PI 

1 
1 

-01.00387 
-0.00025 

-0.00373 
-0.00018 

-0.00014 
-0.00008 

-0.00387 
-0.00026 

-0.03080 
-0.00762 

BONDING 3 PI 1 -0.00035 -0.00005 -0.00030 -0.00035 -G»01134 

TRIPLET 2 PI 2 
TRIPLET 3 PI 3 

-0.00403 
-0.00002 

-0.00454 
-0.00001 

0.00050 
-0.00001 

-0.00404 
-0.00002 

-0.03821 
-0.00185 

TOTAL GAIN -0.00854 -0.00003 -0.00857 

i v 
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TABLE 9 BINDING ENERGIES OF NH FROM VARIOUS WAVE FUNCTIONS 

R 
1.7000 
1.8000 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000 
2.2000 

NH MOLECULAR BINDING ENERGY 

SP 
0.05904 
0.08393 
0.09551 
0.09655 
0.09725 
0.09667 
0.09421 
0.09017 
0.07804 

K+B 
-0.04687 
-0.07216 
-0.08420 
-0.08534 
-0.08623 
-0.08582 
-0.08357 
-0.07977 
-0.06805 

B 
•0.05401 
•0.07928 
•0.09128 
•0.09242 
-0.09330 
•0.09288 
•0.09062 
•0.08680 
-0.07506 

PNO 
-C.03955 
-C.06274 
-0.07267 
-0.07336 
-C.07348 
-0.07233 
-0.06917 
-0.06448 
-0.05115 

N ATOM TOTAL ENERGY 

SP 
-54.43626 

K+B 
-54.43077 

B 
-54.39933 

PNO 
-54.39933 
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TABLE 10. COMPARISON OF SPECTROSCOPIC RESULTS FOR NH 

SPECTROSCOPIC 
CONSTANTS 

Eg(HARTREE) 

Rg(80HR) 

Bgd/CM) 

a^d/CM) 

kg(10~^DYNES/CM) 

a)g(l/CM) 

WgXetl/CM) 

SP 

•55.03365 

1.9619 

16.625 

0.466 

13.359 

4909.6 

78.3 

PNO 

54.97293 

1.9449 

16.917 

0.345 

13.935 

5014.3 

98.2 

EXPTL 

-55.252' 

1.9614' 

16.668' 

0.646^ 

5.410^ 

3125.6^ 

78.5^ 

SCF 

-54.97838 

1.923 

17.319 

0.5715 

7.003 

3556 

66.78 

M 
M 
Ul 

COEFFICIENTS IN THE POLYNOMIAL EXPANSION FOR THE ANALYSIS OF DUNHAM 

SP PNO EXPTL 

agtl/CM) 

2̂ 

362463.9 
"2.053571 
2.130814 

371564.2 
-2.008316 
1.173053 

146526.9 
-2.211289 
2.972499 

^REFERENCE (1) 
^REFERENCE (22) 
^REFERENCE (39) 
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TABLE 11. DECOMPOSITION OF ONE-ELECTRON EXPECTATION VALUES 

NH, R=1,96I4 

K SHELL LONE PAIR BONDING TRIPLET TOTAL 

PNO 
CORR 
TOTAL 

0.057305 
0-000023 
0.057329 

0.337982 
0.000363 
0.338345 

0.428235 
0.000567 
0.428803 

C.361207 
0.000091 
0.361298 

1.184730 
0.001045 
1.185775 0.088 

<rH> 
PNC 
CORR 
TOTAL 

0.493539 
0.000008 
0.493547 

0.656525 
0.000238 
0.656763 

0.410371 
•0.000099 
0.410273 

0.601263 
0.000089 
0.601352 

2.161698 
0.C00236 
2.161934 0.011 Oi 

PNO 
CORR 
TOTAL 

0.017871 
0.000056 
0.017928 

0.559606 
0.001780 
0.561387 

0.898016 
0*003361 
0.901377 

0.667530 
0.000550 
0.668080 

2.143024 
0.005747 
2.148771 0.267 

PNO 
CORR 
TOTAL 

0.980272 
0.000055 
0.980326 

1.878250 
0.001774 
1.880024 

0.921254 
•0 .000126 
0.921128 

1.575166 
0.000600 
1.575766 

5.354941 
O.C02302 
5.357244 0.043 

PNO 
CORR 
TOTAL 

1.659295 
-0.000126 
1.659169 

0.269655 
-0.000133 
0.269523 

0.193886 0.234338 2.357174 
0.000147 0.000042 -0.000070 
0.194033 0.234380 2.357104 -0.003 
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TABLE 11.  (CONT.)  

NH, R=1.9614 

K SHELL LONE PAIR 

PNC 0.127419 0.106784 
CGRR -0.000000 -0.000019 
TOTAL G.127418 0.106765 

PNG -0.000224 -0.061968 
<cos 6 > CORR 0.000000 0.000032 

TOTAL -0.000224 -0.061936 

PNC 0.248459 0.218614 
<cos 8 > CORR -0.000003 -0.000068 

TOTAL 0.248455 0.218546 

PNO -0.000160 -0.090974 
<z > CORR 0.000000 0.000002 

TOTAL -0.000160 -0.090972 

PNO 0.490510 0.581324 
<z > CORR -0.000000 -0.000002 

TOTAL 0.490510 0.581322 

BONDING TRIPLET TOTAL % 

0.227984 0.113546 
0.000356 -0.000009 
0.228341 G.113537 

0.575733 
0.000328 
0.576061 0.057 

0.125324 C.0C8C26 
0.000180 -0.000003 
0.125504 0.OC8023 

0.071158 
0.000209 
0.C71367 0.293 

0.123333 
0.000687 
0.122646 

0.197963 
-0.000018 
0.197945 

0.788369 
-0.000777 
0.787592 -0.099 

0.239251 0.013801 
0.000889 -0.000013 
0.240140 0.013788 

0.161918 
0.000878 
0.162796 0.539 

0.251099 0.476549 
0.000889 0.000013 
0.250210 0.476562 

1.799482 
-0.000878 
1.798604 -0.049 
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TABLE 11.  (CCNT.)  

NH, R=1.9614 

K SHELL LONE PAIR BONDING TRIPLET TOTAL 

PNO 
CCRR 
TOTAL 

0.005963 
C.000022 
0.005985 

0.200792 
0.000508 
0.201300 

0.633969 
0.003021 
0.636990 

0.139241 
0.000157 
G.139397 

0.979966 
0.C03707 
0.983673 0.377 

PNO 
CORR 
TOTAL 

0.968363 
0.000021 
0.968384 

1.519436 
0.000501 
1.519937 

0.657207 
•0.000467 
0.656741 

1.046876 
0.000207 
1.047084 

4.191883 
0.000262 
4.192145 0.006 

<5>  
PNO 
CORR 
TOTAL 

0.280842 
0.000016 
0.280858 

0.507039 
0.000306 
0.507346 

0.427555 
0.000239 
0.427794 

0.490706 
0.000092 
0.490798 

1.706143 
0.000653 
1.706796 0.038 

< n >  
PNO 
CORR 
TOTAL 

•0.222409 
0.000008 
•0.222401 

-0.162406 
0.000064 
-0.162342 

0.009108 
0.00C340 
0.009447 

-0.122390 
O.OOCCOl 
0.122389 

•0.498097 
O.C00413 
•0.497685 -0.083 

<g2> 
PNO 
CORR 
TOTAL 

0.318592 
0.000066 
0.318658 

1.136214 
0.001886 
1.138100 

0.85C367 
0.001314 
0.851681 

1.078235 
0.000583 
1.078817 

3.383408 
0.003848 
3.387257 0̂ 114 
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TABLE 11.  (CONT.)  

NH, R=1.9614 

K SHELL LONE PAIR 

PNC 
<n^> CORR 

TOTAL 

0.20C316 
-0.000009 
C.20C308 

0.131162 
•0.000038 
0.131124 

PNO 
<r «r > CORR 

TOTAL 

0.113754 
0.000072 
0.113826 

0.966631 
0.001851 
0.968482 

<x^+y^> CORR 
PNO 
CORf 
TOTAL 

0.011908 
0.000034 
0.011942 

0.358814 
0.001273 
0.360087 

PNO 
d CORR 

TOTAL 

0.001280 
•0.000003 
0.001277 

0.727789 
-0.000014 
0.727775 

PNO 
Q CORR 

TOTAL 

-0.001184 
-0.000083 
-0.001267 

-0.934718 
0.000790 
-0.933928 

BONDING TRIPLET TOTAL % 

0.095423 
0.00C368 
0.095791 

0.087684 
0.000015 
0.087699 

0.51&585 
0.C(50336 
0.514922 0.065 

0.726085 
0.000910 
0.726995 

0.952685 
0.000546 
0.953231 

2.759155 
0.003378 
2.762533 0.122 

0.264046 
0.000341 
0.264387 

0.528290 
0.000393 
C.528682 

1.163059 
0.C02040 
1.165099 0.175 

0.047390 
-0.007112 
0.040278 

•0.110405 
0.000103 
•0.110302 

0.666054 
-0.007025 
0.659029 —1.066 

-0.375544 2.088354 
-0.039888 0.000746 
-0.415432 2.089100 

0.776908 
-0.038435 
0.738473 -5.205 
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TABLE 12. ONE-ELECTRON PROPERTIES AS FUNCTIONS OF INTERNUCLEAR DISTANCE 

R PNO CORR SP PNO CORR SP 

1.8000 
1.9C0C 
1.923C 
1.9614 
2.GC0G 
2.050C 
2.100C 

1.157355 
1.174861 
1.178518 
1.184730 
1.190628 
1.199457 
1.206534 

0.000849 
0.000956 
0.000989 
0.001045 
0.001106 
0.001195 
0.001305 

1.158203 
1.175817 
1.179507 
1.185775 
1.191733 
1.200653 
1.207839 

2.024953 
2.1G9639 
2.129153 
2.161698 
2.194327 
2.237534 
2.280071 

C.00C371 
C.000290 
0.000271 
0.000236 
C.000197 
C.0OC150 
C.000103 

2.C25324 
2i109929 
2.129424 
2.161934 
2.194525 
2.237684 
2.280174 

PNO 

<r N 

CORR SP PNO 

<r 
H 

CORR SP 

1.8000 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000 

2.028574 
2.100594 
2.116345 
2.143024 
2.168965 
2.207668 
2.240596 

0.004519 
0.005201 
0.005398 
0.005747 
0.006124 
0.006689 
0.007361 

2.033093 
2.105795 
2.121742 
2.148771 
2.175089 
2.214356 
2.247956 

4.747971 
5.120020 
5.207259 
5.354941 
5.5C4861 
5.708081 
5.909912 

0.002818 
0.002521 
0.002444 
0.002302 
0.002135 
C.001929 
C.001719 

4.750788 
5i122541 
5.209703 
5.357244 
5.506995 
5.710010 
5.911631 
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TABLE 12 (CONT.)  

R PNO CORR SP 

1.800C 
1.9C0C 
1.923C 
1.9614 
2.0000 
2.050C 
2.1000 

2.368154 
2.360897 
2.359560 
2.357174 
2.354818 
2.351659 
2.349234 

-0.000134 
-0.000093 
-0.000085 
-0.000070 
-0.000054 
-0.000033 
-0.000018 

2.368020 
2.360805 
2.359475 
2.357104 
2.354765 
2.351626 
2.349217 

<cos 8Q> 

R PNO CORR SP 

1.8000 
1.9000 
1.9230 
1.9614 
2.00OC 
2.0500 
2.1000 

0.070001 
0.070776 
0.070867 
0.071158 
0.071360 
0.071651 
0.071910 

0.000133 
0.000181 
0.000191 
0.000209 
0.000227 
0.000248 
0.000268 

0.070134 
0.070957 
0.071058 
0.071367 
0.071587 
0.071899 
0.072178 

PNO 

0.621271 
0.592397 
0.585974 
C.575733 
0.565815 
0.553330 
0.541310 

CORR 

C.000183 
C.000273 
0.000293 
C.000328 
0.000364 
0.000408 
0.000450 

SP 

0.621454 
0.592670 
0.586267 
0.576061 
0.566178 
0.553738 
0.541760 

PNO 

0.773134 
0.782666 
0.784874 
0.788369 
0.791814 
0.795862 
0.800180 

<cos 

CORR 

-0.000511 
-0.000664 
-0.OOC705 
-0.000777 
-0.000854 
-0.000958 
-0.001075 

SP 

Oi772623 
Oi782002 
04784168 
Oi707592 
0.790960 
0.794904 
0.799105 
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TABLE 12.  (CONT.)  

R PNO CORR SP 

1.8G00 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000 

0.144612 
0.155414 
C.157830 
0.161918 
0.166026 
0.171241 
0.176353 

0.000473 
0.000705 
0.000768 
0.000878 
0.000997 
0.001161 
0.001343 

0.145085 
0.156119 
0.158598 
0.162796 
0.167023 
0.172402 
0.177696 

R PNO CORR SP 

1.8CC0 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000 

0.903821 
0.951313 
0.961871 
0.979966 
0.998140 
1.023499 
1.046660 

0.002424 
0.003127 
0.003333 
0.003707 
0.004123 
0.004737 
0.005466 

0.906245 
0.954440 
0.965204 
0.983673 
1.002263 
1.028237 
1.052127 

PNO 

1.655388 
1.744586 
1.76517C 
1.799482 
1.833974 
1.878759 
1.923647 

CORR 

-C.000473 
-0.000705 
-C.000768 
-C.00C878 
-0.000997 
-C.001161 
-C.001343 

SP 

li654915 
1.743881 
li764402 
1.798604 
1.832977 
1.877598 
1.922304 

PNO 

3.623217 
3.970740 
4.052786 
4.191883 
4.334035 
4.523912 
4.715977 

CORR 

C.000723 
C.000447 
0.000379 
0.000262 
0.000134 
-0.000022 
-0.000176 

SP 

3.623940 
3.971187 
4.053164 
4i192145 
4.334170 
4.523890 
4.715801 
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TABLE 12 (CONT.)  

< s >  

R 

1.8000 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000  

PNO 

1.767948 
1.728684 
1.720058 
1.706143 
1.692477 
1.676581 
1.660288 

CORR 

0.000678 
0.000656 
0.000655 
0.000653 
0.000652 
0.000656 
0.000671 

SP 

1.768626 
1.729340 
1.720713 
1.706796 
1.693129 
1.677237 
1.660959 

PNO 

<g2> 

CORR SP 

1.8000 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000 

3.678629 
3.489545 
3.448700 
3.383408 
3.319886 
3.247141 
3.173351 

0.004341 
0.004005 
0.003945 
0.003848 
0.003749 
0.003660 
0.003609 

3.682970 
3.493550 
3.452645 
3.387257 
3.323635 
3-250801 
3.176960 

PNO CORR SP 

0.481999 
0.491989 
0.494350 
0.498097 
0.501850 
0.506379 
0.511208 

C.00C265 
C.000351 
C.000373 
0.000413 
0.000454 
C.00C510 
0.000572 

-0.481734 
-0.491638 
-0.493977 
-0.497685 
-0.501396 
-0.505869 
-0.510635 

PNO 

C.504423 
0.510796 
0.512222 
0.514585 
0.517027 
0.520021 
C.523024 

<n^> 

CORR 

0.00C188 
C.000273 
C.000295 
0.000336 
C.000380 
C.00C441 
C.000509 

SP 

0.504611 
0.511068 
0.512518 
0&514922 
0.517407 
O;520462 
0;523533 
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TABLE 12.  (CONT.)  

R PNO CORR SP 

1.8000 
1.9000 
1.9230 
1.9614 
2.0C00 
2.0500 
2.1000 

2.571106 
2.688321 
2.714721 
2.759155 
2.802859 
2.865181 
2.921986 

0.003364 
0.003369 
0.003374 
0.003378 
0.003369 
0.003381 
0.003418 

2.574470 
2.691690 
2.718096 
2.762533 
2.806228 
2.868562 
2.925404 

1.8000 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000 

PNO 

0.643103 
0.656687 
0.660360 
0.666054 
0.671792 
0.680075 
0.689175 

d 

CORR 

-0.003780 
•0.005641 
-0.006145 
-0.007025 
-0.007978 
•0.009287 
-0.010747 

SP 

0.639322 
0.651045 
0.654215 
0.659029 
0.663813 
0.670787 
0.678428 

<x^+y 

PNO 

1.124753 
1.149281 
1.154474 
1.163059 
1.170825 
1.184168 
1.193935 

CORR 

C.002095 
0.002074 
G.002065 
C.002040 
0.002000 
0.001951 
0.001894 

SP 

1.126848 
1.151354 
1̂ 156538 
1.165099 
1#172826 
lil86120 
1.195830 

Q K 

PNO CORR SP 

0.541491 
0.677186 
0.715801 
0.776908 
0.837401 
0.920910 
1.020028 

-0.019836 
-0.029924 
-C.032924 
-C.038435 
-0.044655 
-0.053807 
-C.064699 

0.521655 
o;647262 
Oî682877 
0.738473 
0*792746 
0.867103 
0*955329 
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TABLE 13. GEMINAL TWO-ELECTRON EXPECTATION VALUES 

NH, R = 1.9614 

<r — 1 . 
12 

PNO MATRIX 

K 
L 
B 
T 

K 
0.147055 
0.133407 
0.108549 
0.130473 

0.025065 
0.072913 
0.084075 

B 

0.024528 
0.077617 0.02C820 

CORR MATRIX 

K 
L 
B 
T 

K 
-0.001750 
-0.000062 
0.000046 
0.000018 

•0.000369 
-0.000023 
-0.000023 

B 

-0.001853 
-0.000033 -0.000294 

<:Ï2 > 

PNO MATRIX 

K 
L 
B 
T 

K 
0.005106 
0.329995 
0.523954 
0.392458 

0.150429 
0.990157 
0.788042 

0.191158 
0.882356 0.190505 

CORR MATRIX 

K 
L 
B 
T 

K 
0.000056 
0.001050 
0.001955 
0.000346 

0.000650 
0.002584 
0.001161 

0.015991 
0.002214 0.000160 
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TABLE 13. (CONT.) 

NH, R = 1.9614 

<cos 8̂  i2> 

PMO MATRIX 

K 
K 0.000000 
L -0.000076 
8 -0.001009 
T -0.001662 

0.002194 
-0.031377 
-0.021193 

0.008975 
0.001691 0.000037 

CORR MATRIX 

K 
K -0.000409 
L -O.OOOGOO 
B -O.000CO5 
T -O.OCOCOl 

-0.000010 
0.000139 
0.000057 

6 

-0.001198 
-0.000004 -0.000003 

<cos H , 1 2  
PNO MATRIX 

K 
L 
B 
T 

K 
0.035275 
0.124151 
0.070041 
0.112332 

0.027310 
0.061049 
0.092213 

B 

0.008692 
0.054471 0.022394 

CCRR MATRIX 

K 
K -0.000004 
L -0.000041 
B -0.000391 
T -0.000012 

-0.000025 
-0.000355 
-0.000023 

B 

•0.002437 
•0.000300 -0.000063 
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TABLE 14. TWO-ELECTRON PROPERTIES AS FUNCTIONS OF INTERNUCLEAR DISTANCE 

R  

1.8000 
1.9000 
1.9230 
1.9614 
2.OOOC 
2.050C 
2.1000 

PNO 

0.837289 
C.828914 
0.827267 
0.824503 
0.821939 
0.818085 
0.815285 

CORR 

-0.004192 
-0.004288 
-0.004311 
-0.004348 
-0.004381 
-0.004426 
-0.004473 

SP 

0.833097 
0.824626 
0.822956 
0.820155 
0.817558 
0.813659 
0.810812  

PNO 

4.213272 
4.358732 
4.390426 
4.444160 
4.496178 
4.574153 
4.640013 

CORR 

C.020195 
0.023679 
C.024596 
C.026167 
0.027809 
0.030129 
0.032692 

SP 

4.233466 
44382411 
4.415023 
4i470326 
4.523987 
4*604282 
4.672705 

R 

1.8000 
1.9000 
1.9230 
1.9614 
2.0000 
2.0500 
2.1000 

PNO 

•0.042490 
-0.042440 
-0.042437 
-0.042420 
-0.042411 
-0.042391 
-0.042373 

<cos 

CORR SP 

-0.001357 
-0.001406 
-0.001417 
-0.001434 
-0.001452 
-0.001473 
-0.001494 

-0.043847 
-0.043845 
-0.043854 
-0.043854 
-0.043863 
-0.043864 
-0.043868 

PNO 

0.582798 
0.598470 
0.602123 
0.607927 
0.613672 
0.620454 
0.627719 

<cos 8g 12> 

CORR SP 

•0.002939 
•0.003364 
•0.003470 
•0.003652 
-C.003838 
•0.004087 
•0.004351 

0.579859 
0.595106 
0.598653 
0.604276 
0.609834 
0.616367 
0.623369 



www.manaraa.com

128 

NHTURRL ORBITAL CONTOUR MAP l. 
NH K SHELL 1 SIGMA 1 (0C=+O.999823 
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I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 2. 
NH K SHELL 2 SIGMA 2 (0C=-0.01128) 
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î 

1 
I 1 = I BOHR 

NRTURRL ORBITAL CONTOUR MAP 3. 
NH K SHELL 3 PI 1 (0C=-0.00873) 
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NATURAL ORBITAL CONTOUR MAP 4. 
NH K SHELL 4 SIGMA 3 (0C=-0.00863] 
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I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 5. 
NH LONE PAIR 1 SIGMA 1 (pC=+0.999231 
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/ 

= I BOHR 

NATURAL ORBITAL CONTOUR MAP 6. 
NH LONE PAIR 2 SIGMA 2 (0C=-0.03259) 
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N 

H 

I 1 = I BOHR 

NATURAL ORBITAL CONTOUR MAP 7. 
NH LONE PAIR 3 DELTA 1 (0C=-0.0125tll 
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V  m  ^  ^  I  l l l l l  i l  ;  I  . ^ - v .  ^  

Cl## 
/ 

•̂ •S.--̂  J I i 
I 

y - Y  

= l BOHR 

NATURAL ORBITAL CONTOUR MAP 8. 
NH LONE PAIR 1 PI l (0c=-0.00907) 
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NHTURRL ORBITAL CONTOUR MAP 9. 
NH LONE PAIR 5 SIGMA 3 (0C=-0.001171 
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V 

N 

H 

h = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 10. 
NH BONDING 1 SIGMA 1 (0C=+0.99377) 
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{ = 1 BOHR 

NATURAL ORBITAL CONTOUR MRP 11. 
NH BONDING 2 SIGMA 2 (0C=-O.09961] 
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NATURAL ORBITAL CONTOUR MAP 12. 
NH BONDING 3 PI I (0C=-0.027871 
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NATURAL ORBITAL CONTOUR MAP 13. 
NH BONDING 4 SIGMA 3 l0C=-0.026521 
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I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR 
NH BONDING 5 SIGMA 

MAP 
(0C=-0.01091) 
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f 
• \ 

V o') ) 

0 :# 0 
/ 
a<\ •• 

' /« r̂ sO- * 

I 

= I BOHR 

NATURAL ORBITAL CONTOUR MAP 15. 
NH BONDING 6 SIGMA 5 (0C=-0.00797] 
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' / © V -

I 
= 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 16. 
NH BONDING 7 SIGMA 6 (0C=-0.00617) 
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//l/iW 

4 = 1 BOHR 

NATURAL ORBITAL CONTOUR MRP 17. 
NH BONDING 8 SIGMA 7 (0C=-0.00369] 
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•-

= 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 18. 
NH TRIPLET 1 PI 1 (0C=+0.999253 
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\ = I BOHR 

NATURAL ORBHAL CONTOUR MAP 19. 
NH TRIPLET 2 PI 2 (0C=-0.03875) 
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î 

I 
I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 20. 

NH TRIPLET 3 PI 3 (0c=-0.001825 
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N 

I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 21. 
NITROGEN K 1 S 1 C0C=+0.99979) 
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• o - I 

\ 

= 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 22. 
NITROGEN K 2 S 2 [0C=-0.0115B) 
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N 

I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 23. 
NITROGEN K 3 P 1 C0C=-0.00980) 
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I 
I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MRP 24. 
NITROGEN L I S 1 (0C=+0.99916) 
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I 1 = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 25. 
NITROGEN L 2 0 1 [0C=-O.01326) 
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I 1 = I BOHR 

NATURAL ORBITAL CONTOUR MAP 26. 
NITROGEN L 3 P 1 (0C=-0.00802) 
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I 1 = I BOHR 

NATURAL ORBITAL CONTOUR MAP 27. 
NITROGEN L 14 S 2 C0C=-0.00171) 
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j = 1 BOHR 

NATURAL ORBITAL CONTOUR MAP 28. 
NITROGEN L 5 P 2 C0C=-O.00169) 
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N 

I 1 = I BOHR 

NATURAL ORBITAL CONTOUR MAP 29. 
NITROGEN L 6 S 3 (0C=-0.00158) 
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= I BOHR 

NATURAL ORBITAL CONTOUR MAP 30. 
NITROGEN Q I P 1 C0C=+1.00000) 
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CHAPTER II. ATOMIC ORBITAL OVERLAP INTEGRALS 
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INTRODUCTION 

Overlap integrals play an important role in molecular 

quantum mechanics when atomic orbitals are used for expanding 

electronic wave functions. Since the expectation values of 

several one-electron operators can be expressed as linear 

combinations of overlap integrals, and since Coulomb integrals 

can be expressed as a quadrature over them (102), their use

fulness transcends their function of determining the metric 

of the non-orthogonal basis set. In the context of ̂  initio 

calculations of molecular properties, an accurate and efficient 

method for numerically evaluating these integrals is 

essential. 

Several schemes have recently been reported in the 

literature (103-105) for this purpose. Although the present 

investigation owes considerable stimulation to the work 

mentioned in Reference (103), it is based on a different 

analysis. The resulting expressions are different and con

siderably simpler than those obtained before. Compatibility 

with electronic digital computers has been influential in the 

arrangement of the resulting equations. The formulation given 

is particularly advantageous if ample storage capacity for 

large arrays of numbers is available. 



www.manaraa.com

160 

OVERLAP INTEGRALS 

Definition 

If the normalized Slater-type atomic orbitale on centers 

A and B are given by 

p. 

(AnimjC) = ^%p(*A*A)' 

(Bn'4'm'; C') = (2n') ^ 

(105) 

then the overlap integral between them is 

8nf'**'(PA'PB) = ;dV(An4m;C)*(Bn'4'm';;') (106) 

where ' 

= RÇ and pg = RC'" (107) 

The coordinate systems on A and B are defined as follows: 

the axis points toward the origin B, the Zg axis points 

toward the origin A, and Xg are parallel, and Yg are 

parallel, and the distance between A and B is R. As a result 

of this choice, the integral values for R = 0 differ by the 

factor (-1)^^^ from what they are when both atomic orbitals 

are referred to the same coordinate system, namely, 

(hW • 

The spherical harmonics can be chosen real or complex. 

In either case one finds 

C""'(PA->'B> - ('>A-PB> <"«> 
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where depends only on [mj . We therefore consider the 

case m>0. Then 

Yj^(6 4)= (P] (cos 0) $^(4)) (109) 

where (p™ are the normalized associated Legendre functions and 

* 
the 0^(4» ) have the property /d<j) ((f) ) . By 

Rodrigue's formula, can be expressed as 

P^(cos e)=Kj^(l-co82e)*/2 Z cj™(cos 9+l)°'"®(cos 0-1) ̂""(110) 

with 

(111). 

C - (i) (ail 

Integration 

The integration is performed in elliptic coordinates 

defined by 

Ç = (r^ + rg)/R 1 < C < CO 

n = (r^ - rg)/R -1 < n< 1 (113) 

(j)" = (|)^ = <j)g 0 < <j) < 2ir 

dV = (B/2)^(ç 2 - n ^) d Çd ndt) • 

The integrand is transformed with the help of the relationships; 

Ta = -|r(Ç-wi ), rg =-|R(Ç-ri ), (114) 

(cos 0. ± 1) = (1 i%)(l in)/(Ç+Ti), (115) 
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(cos eg ± 1) = (1 ±ç)(i+Ti)/(ç-n), (116) 

J ^ 
(C±n)^ = E (5-i) j" i  (i±n)^, (117) 

(S+l)j = s (j] 2i(5-l)j"i . (118) 

Substitution of these identities into the integral and 

algebraic rearrangements yield 

• - A £ 2: Z'r-

1 -1 (119) 

v.pp.7 - (-l)4+«'+G+G'Kĵ K2.n[(2n) ! (2n') 

where 

/n-^V n'-i'\ a+a'-raV 

I  P  )  [  P  ) [  7 ) 2 ^  ( 1 2 0 )  

and 

P = •|(Pa + Pg) ' ® " ¥pA - PB^' (121) 

The Ç integration is straight forward, and the n 

integration leads to the auxiliary functions ^^^(x); defined 

by (103, Eq. 19) 

I - / dne-x"(l+n)=(l-n)P - I„p(x) • (122) 
— 1 

In Appendix A,it is shown that 

I = x^I^(x)wOP (123) 
H=0 P 

where 
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(x) - [(2n+l)/2^+^l (^)/ dr(l-n2)^e-*"(124) 

and 

(125) 

Thus Eq. 119 becomes; 

i £' n-f n'-f' a+a'-m 
E E L E E 

a=m a*=m p=0 p*=0 y=0 
8=(pA*+l/2p^n'+l/2ypn+n'+l) g-p ^ EE E 

i+i'+3+p* 
L (n+n'-p-p'-?)! 

ti=0 ^ 

w a-a'+P+4',a'-a+P' + 4 6+l3»+7 i (%). (126) 
|i ^ 

The expression, Eq. 126, is now rearranged in two steps. 

First the summation over y is replaced by a summation over the 

new index v defined by 

u = p + P ' + 7  ( 1 2 7 )  

then the summations are rearranged as follows 

E E E E E E > E E E E E E 
a a' fi (i ' n V (luPii'aa 

, (128) 

and the corresponding changes in the summation limits are 

made. Thereby one arrives at the final formula 

(pA'Pg) -

3: .. ̂  
where 
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exp[(pAtpB)/2i (13°) 

"2 
S " ? (PA+Ps) A^y(nn'44'm) (131) 

With the limits 

= Max {O, 1 i - i* I-p., H —(i+-C*)4 (132) 

•Ug = n + n* - m. (133) 

The constants A are defined by 

U+m] ,/2 
( 2 4 + l ) ( 2 4 ' + l )  V  m  M  m  /  1  

u) f;) (B (" j J 
A y(nn'44'm)=(-l)4+4' 

where 

^2 ^2 
B̂ ^̂ Cnn'irm) - L ) (u+p+pi+i+r+1) ! 

P-Pl V I p'=p ^ 

A/-"' aw 
1 

•(oî^p") (3-o'+e+«') ! (a'-a+p'+«)! 

• 2 (135) 

In Eqs. 134 and 135, the following definitions have been used; 

A = Min-tii+'D+i+-0', p.+n+n*4+l 
! 

= Max-^O, |i-n*-i, •o-n'-i+m-J 

Pg = Min-tn-i, -o-J 
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= Max{0, 

= Min{n'-i', 

aj^ = Max{m,u-p̂ P*-̂ *+m̂  

a^ = Max-tm, u-p-p'-a+m^. 

Discussion 

The constants B have the symmetry 

B ̂ (nn'44'm) = (-l)^B ^(n'nj'jm) (136) 

corresponding to the identity 

Snn-" (PA'Ps) = K''n 

Guided by the observation (103) that the overlap integral 

I P- \ 
should be proportional to R' ', the constants B^^ were 

investigated and shown to be identically zero whenever 

M- + u < for all possible combinations of quantum 

numbers. Thus R^^"^ ^ is the lowest power of R occurring in 

the overlap integral. It was further found that for n=n' and 

i=^', B^^ is identically zero if M is odd. 

The constants B involve only the multiplication, addition 

and subtraction of exact integers (the factor A used in Eq. 

135, is chosen such as to be always greater than (M+3+p'+i+ 

i'+l) so that the quotient of the corresponding factorials 

is an exact integer). Therefore, in spite of negative terms, 

no loss of figures is incurred if integer arithmetic is used 

to evaluate the B's. 
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The final constants, Eq. 134, can be computed once 

for all combinations of quantum numbers desired, stored on 

tape or disc in a continuous one-dimensional array and read 

into the computer as a block when a calculation of these 

integrals is to be made. They are best stored sequentially 

in the order in which they are used when evaluating the 

expression in Eq. 131. From a given set of quantum numbers, 

the starting index which corresponds to the first constant 

can be generated. 

The functions f are discussed in Appendix B. 

The special case of C=C' yields 

("A'PA) - e (138) 
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NUCLEAR ATTRACTION AND KINETIC ENERGY INTEGRALS 

An energy minimization calculation implies the continued 

recalculation of certain one-electron two-center integrals 

for each variation of the atomic orbitals. Considerable 

savings of computational time can be achieved by calculating 

certain two-center nuclear attraction, kinetic energy and 

overlap integrals at the same time. The former types of 

integrals are given by the following standard formulas (106): 

<CAn*jç) 1̂ 1 (p̂ .pg) (139) 

—z 
'h 

<(Anfm;;) (Bn'4' Ô>=- ^mm'^^nn" %'Pb̂  

+ ̂ n^n-l™n' ^0,n-^-l%^ ®n-2,n» ̂ ^A'^B^^ 
(141) 

where 

». -•Eifel'"' 

^ - 2(n+^) (n-i-1) , ym 
^n [n(n-l)(2n-l)(2n-3)J^^^ " 

Thus it can be seen that for a particular pair of orbitals, 

only one array of the functionsf^^ (/t>^,Pg), needs to be 

calculated for 0^<n+n% From this one set of f values, 
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the overlap function S with subscript pairs (n,n'), (n-l,n*), 

(n, n*-l) and if necessary (n-2, n*) can be computed by 

summing the double series in Eq. 129. Since the calculation 

of the f functions represents the largest expenditure of time, 

this grouping is economical. 
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COMPUTATION TIMES 

For each of the 83 distinct combinations of the quantum 

numbers, (n^m) and (n*i'm) which give rise to non-zero 

integrals for n and n' < 4, the two-center overlap, kinetic 

energy and nuclear attraction integrals, as described above, 

were computed and timed for the most time consuming case of 

Ça ^ ^b* taking all integrals with a given value of n^^ = 

(n +n')/2 and averaging the observed times per integral, 

the following formula was found to give the computation time 

dependence of these integrals on the average principal 

quantum number n^^: 

2 
time per integral =1.1 + 0.5 n^^ (milliseconds/integral). 

Calculations of all two-center integrals of the above 

types occurring over basis sets of orbitale (again with dif

ferent orbital exponents) were performed and timed as a 

function of N, the number of orbitals on each center: N = 1 

correspondng to a Is orbital on each center, N = 2 correspond

ing to a Is and 2s orbital on each center, . . . , N = 14 

corresponding to Is, 2s, 2pa, 2pir, 2pT, 3s, 3po,3p?,3p?,3do,Sdir, 

3diT, 3dô, 3dô on each center. By taking the value of the 

total time spent in each case and dividing by the number of 

non-zero integrals actually computed, the following formula 

was found: 
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Average time per \ + 0.4 N - 0.01 (milliseconds/ 
non-zero integral] integral). 

However, dividing the total computation time in each case by 

2 
the total number of integrals, N , which includes those 

integrals that are identically zero, gives an average time 

of 1.9 ± 0.3 milliseconds per integral, independent of N. 

The times quoted here were obtained on an IBM 360/50 

computer using all FORTRAN programs with double precision 

arithmetic and making use of the criteria discussed in 

Appendix B for computing the functions to ten figures. 

Multiplication by 0.3 would give times comparable with IBM 

7094-type equipment. 
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APPENDIX A: DERIVATION OF EQUATION 123 

It can be shown that the functions in Eq, 124, 

I^(x) - il (AD 

can be expressed as 

(A2) 

The expression of Eq. 123 is therefore obtained by substi

tuting in Eq. 122 the expansion, 

(i+n)*(i-n)̂  = D, (A3) 
k=0 

where 

D^^ =-|(2k+i) P%(n)(i+n)^(i-n)Gdn. (A4) 

Using, in Eq. A4, the representation, 

P.(n) = 2"̂  L IfY (n+i)̂ (n-i)k-̂ , (A5) 
 ̂ X=0 \ / 

one finds 

D̂  ̂= (2k+l)20+9(_l)k E (-1)̂  (x)̂  ̂ (a+e!̂ k+l)̂ '̂ <̂ 6) 
X ~0 

whence Eq. 123 follows directly. A different expansion of these 

functions has been discussed by Roothaan (107). It may also be 

mentioned that 

Ij^(x) = [(2k + l).Vk](2ix)"^jj^(ix) (A7) 

where j^(z) is the spherical Bessel function (108, p. 437, 443). 
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APPENDIX B: DISCUSSION OF AUXILIARY FUNCTIONS f^CPayPg) 

The functions proportional to the confluent 

hypergeometric functions: 
-Pa 

fjji(PA>PB^ ~ ® 1^1 (^+1; 2n+2; 

-Pb 
= e 1^2 (|i+l, 2^+2; pg-p^)(Bl) 

and can also be represented by the generalized hypergeometric 

series: 

f̂ (PA.PB) -® oF̂ [|»+3/2i (PA-V̂ ' 1- (B2) 

From this representation follows the property: 

(83) 

which was used in Eq. 137. It is also easily shown that the 

following relation is satisfied; 

exp[Min(p^, Pg)] < fp(pA,PB) 1 exp[Max(p^, Pg)]. (B4) 

These functions can be calculated by means of the 

recurrence relation 

f̂ (PA'PB) = [4(2|l+l)(2|x-l)/(P4-Pg)®][f̂ .2(PA.PB) 

- (B5) 

Where the starting functions are given by: 

1 "PR "PA 
f_l(pA»PB^ "2^® + e ) (B6) 

Ô̂ Â'̂ B̂   ̂"® *)/(pA ~PB̂  (B6*) 
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"̂ A 
fj,(pA»PA> = ® • (B7) 

Using an IBM 360/50 with double precision arithmetic, 

the relation (B5), gives ten or more significant figure 

results whenever 

IVBI ZX-O 13 + 0.15 (B*) 

is satisfied. Here represents the highest index value \i 

needed for a particular integral, namely |jt =n+n *. When 

( p^-is smaller than given by Eq. B8, then f^ is calculated 

by means of a continued fraction (109): 

- '-/"A'Ps) Vî 'A. V (B9) 

where 

The number of terms t, needed in the continued fraction 

in order to guarantee convergence to ten significant places 

was found to be approximately: 

t = largest integer in ̂ 2.5 + 3.75|p^-o^/^^^^^. (Bll) 

The values of the cut-off points for the two schemes in Eq. B8 

and Bll can be stored as an array indexed by so that only 

a negligible amount of time is used to determine which method 

to use. 

The accuracy with which the functions f^ are calculated 

determines the accuracy of the final result since the remain

ing factors in Eq. 129 can all be calculated without any loss 
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of figures. For a particular problem, the criteria in Eqs. 

B8 and Bll can be adjusted to yield optimal balance between 

speed and accuracy. 
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CHAPTER III. ATOMIC ORBITAL COULOMB INTEGRALS 
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INTRODUCTION 

The accurate and efficient numerical evaluation of 

electron repulsion integrals is a necessary and essential 

step in molecular calculations. Among them, the one-center 

integrals, and the two-center Coulomb integrals are the 

largest in magnitude. The latter moreover, have long-range 

character and cannot be neglected even for large internuclear 

distances. 

Recently, O-Ohata and Ruedenberg (102) observed that a 

Coulomb integral, C, is related to a corresponding overlap 

integral, S, by Poisson's equation AC=- 4t7S, and that methods 

for evaluating Coulomb integrals can therefore be obtained 

from appropriate overlap integral representations with the 

help of the potential integral C = f dV S/r. Using their own 

results for overlap integrals (103), they furthermore derived 

certain expressions for Coulomb integrals (102). It has been 

found that these expressions, although useful in various 

respects, still contain some cumbersome parts and numerical 

instabilities, but that these shortcomings can be eliminated 

if, instead, one inserts in the potential integral the new 

overlap formulation given in the preceding chapter. The 

results, which are given below, furnish an efficient procedure 

involving a finite triple sum over powers, two special func

tions and constants. 
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In this scheme, no advantage is being taken of those 

economies which result from an explicit use of the charge 

distribution concept (110,111,104) but as a compensation, 

all manipulations involving the four quantum-number doubles, 

M, can be embedded in the constants which can be calculated 

once and for all. Thereafter they can be stored permanently 

for use in the evaluation of specific Coulomb integrals. In 

contrast to other procedures advanced for these integrals 

(105,112), the expressions given here gain in accuracy or 

can be computed to the same accuracy in less time when the 

orbital exponents of the atomic orbitals on one center 

approach those on the other center. 
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DEFINITIONS 

Let a real, normalized, Slater-type atomic orbital on 

nucleus A, as a function of particle i, be denoted by 

(An^raÇ, i) = (2c)K+l/2[(2n)!]-l/2r2:l e Ai^ * 

Then the Coulomb integral is defined as 

C — [ An^^^ 1^1^ ^^2^ 2 ^ ^^3^ 3^3^ 4^4^ 4 ̂ 

= /dV^ /dV2(An^&^m^s^,l)(An2&2m2g2,l) 

. (rï^^(Bn32gm3;g,2)(Bn4A4m^;^,2). (144) 

The real spherical harmonics, are defined by 

y &m^^^ = (cos e)[(l + 6^ cos m (f), nf 0 

= ̂ ^^^)(cos sin|m|<f>, 1 m<0 (145) 

where (p|"'' are the normalized associated Legendre functions. 

The coordinate system used here is the same as in the pre

ceding chapter and R is the internuclear distance. 

The Coulomb integral, Eq. 144, will be evaluated with the 

help of the Poisson equation (102), 

m 

C = -4ITS (146) 

where 

S = /dV^(An^&^m^C^, 1) (An2)i2'"2^2»^^ ̂ ®"3^3'"3''3'^^ ̂ ®'^4^4™4^4'^^ 

(147) 
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2 
and the differentiations in V refer to the components of the 

interatomic distance. 

By virtue of the discussion in (102, section 5), the over

lap integral, S, just introduced can be related to the 

overlap integrals defined in Eq. 106 in the preceding chapter 

by the identity 

s - E LP ® (Ç .R, CgR) (148) 

Vn Vb ^ B 
Where the symbol P is used to abbreviate the expression: 

P = (2£^+l) ̂  ^2^2^2^ ^^A™A^^l"^1^2^2^ 

• (2&g+l) ̂  P("3^3^3» "4*4^4) (149) 

In Eqs. 148 and 149^ the following definitions are used: 

"A = "1 + ^2 -1 = *3 + %4 - 1 (150) 

^A = Si + ^2 Sg = C3 + Ç4 (151) 

p(n^&^;i, (2n^+2n2-2) !/T(2n^) Î (2^2)!]^^^ 

n +1/2 n +1/2 n +n. -1/2 
•Çi C 2  . (152) 

The summation over S,^ is limited by 

&1+&2 """^A even (153) 

and the summation over m^ is restricted to the two values, 

m^^ and m^_, given by 

m^^ = sign (m^) sign (mg) | (|m^| ± | m^l ) | (154) 
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where 

sign (x) = x/1 xl and sign (0) = +1. 

The remaining quantities are: 

(155) 

mi+*2 

0 0 0 

s 'A 

A'"A-

Jm^l Imgl-Clm^l +  lmgl) 

Max-tjm, 1, |m |4r g i 

(156) 

1/2 

where the symbol, 

[ WAp 

* \ 0 0 0 /I-1 I 

"i S sy 

\"^l "^2 ̂ 3/ 

Imgj (Im 
'A 1 

jl -1 nigl )/ 

y/r 

(157) 

is the Wigner 3j coefficient 

(113 and 103, Eqs. 3.19 to 3.22) and and depend upon 

the signs of the product, (m^Wg), and the sum, (rn^+mg), 

according to Figure 1. The parameters and m^ are similarly 

related to and m^ 

(m^Mg) (m^+Mg) 

+ + 1  

+ —  — .  1  

—  + - 1  

1  

- 0  0  

0  +
 

0
 

1 0  

Figure 1. Values for EpsiIons 
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DERIVATION 

Integration of Poisson Equation 

The integration of Eq. 146 is discussed in (102, section 

1.4) and its application to the present case leads to; 

C = 4? Z S P Z 

'•A hi VB 

& & ^irA B ^ 

^ -Kg 0 / [M -M 0 

. {R-^1 (Rt 
^ u n. lipj 

^ jjj dR'(R')-L+l (R'SAfR'Sg^^, (158) 

hV 
where S is the overlap integral defined in Eq, 129 of 

the preceding chapter. The summation over L is limited by 

I & A"^ = even (159) 

and the summation over M is restricted to 

r-min t M<^+min {('A* (160) 

Introduction of Auxiliary Functions 

The expression enclosed in braces in Eq. 158 can be 

transformed as follows: 

K  -  { . . . 4 - r 2 [  d t  ( t P A - t P g )  

+ il (tPA'tPb)]' (IGl) 

With 
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Pi ®^i* (162) 

Substitution of Eq. 129 from the preceding chapter into 

Eq. 161 yields 

K ° [jg t^+L+2f^(tp^,tp2)g^(tp^,tPg) 

+ dt (163) 

where P* is an abbreviation for 

n.+l/2 n^+1/2 
P* = (2p^/p^ +Pg) (Zpg/pA + Pg) * (164) 

The functions g and f were defined in Eqs. 130 and 131 of 

the preceding chapter, respectively. The function f^ was 

discussed further in Appendix B of that chapter. 

We substitute the definition of into Eq. 163 and 

define the auxiliary functions: 

G ,, (x,y) = f dt t* f,,(tx, ty) (165) 
Jo ^ 

H (x,y) = f dt t" f (tx, ty). (166) 
n,|J. J 2 M-

Thus we obtain for K the expression 

, "a+"b vg 

K=R P« (PA+Ps)^ "^fiV^"A"B^AV^ 

'[G^+v+L+2,^(PA*PB) ®ti+v-L+l,fi^^A»^B^^ (167) 
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where the limits, and Vgj the constants are defined 

by Eqs. 132, 133 and 134, respectively in the preceding 

chapter. 

Substition of this expression into Eq. 158 yields 

C - 4irR^P' S E P L I ^ ^ ^ 
""A^ ["A ""B ° 

'^A «-B ^ 

M -M 
^ (Pa~PB^'^ ^ 

0 I \L V 

'[G^+^+L+2,p(pA'PB) ®U+v-L+1,|I^PA»PB^^ • 

Rearrangement of Summations 

Finally we rearrange Eq. 168 by interchanging 

summations as follows: 

E E E L L L Z E 
^A  ̂  ̂  ̂  ̂ 11 V L m  ̂ mg 5,̂  £G M 

(169) 

and by making the corresponding changes in summation limits. 

Thereby we arrive at the end result 

V°B V"B 

C - Z C (PA"PB^'' ^ <PA+PB^^ , ? "iJvIi 

' ̂%+v+U2,II^''A'''B' * 'V+v-L+l,|l^''A'fB^l 

with the limits and restrictions 

^ m i n  ~  ^ ^ 3 " ^ ^ 4 ^  '  I  ^ 3 " ' " • ^ 4 ' ' ' ^ )  »  
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V* = [^l if [odd"] 

^rain MaxfO, (x-v, | ["(^3+^4)» I ^3"^4 l'"(^l+^2^'^ 

\^x = Mi* t4l+&2+&3+*4' ̂ +v4 

L + &1+&2 +&3+*4 even. 

The coefficient Z is given by 

Z = Z(R?J^?2^3^4'^I'^2^3'^4^ 

1 4 n +1/2 4 nA+OR+i 
= R"^ n {(2p.) ̂  [(2n )!] 2 p.) ̂  

i=l ^ ^ i=l 1 
(171) 

_.^,/ /2fi 

The constants are given by 

^jx vL^^A^l™!^2™2» *B^3™3^4™4^ Q(n^+ng-v) •'/ ^ |i 

, max 

1 /» max 
(2AA+l)[(AA+m)! (,%_*).ll/Jy&a! , = 4,_,m*(*S*3*4*4) 

B ^,min 

max 
! ( o_-M^ « 1 • [ (2- Q)/A! ] [a^+M) : (&^-M) I ( l^+U) .' ( j^-M) Î ] 

. / % M 
\M -M 0/ ®|xv^Vb^A%M> (172) 

where the constants are defined in Eq. 135 of the preceding 

chapter and the following further definitions have been 

introduced: 
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4 
Q = n 

i=l 
[(-l)^i (24.+1)1/2] 

m = |m^ j 

'^A,min 
= Max-tm, -L,L- (^3+ 4^)4 

"^Ajmax = Minf^i+^g, L+4g+(^4 

^#,min = Max-fm, 1^3-4^1, 1l-4|4 

,max = Min{4g+f^; L+44 

M = 
max Min -t-^A'-^B» 

A — Min-fjx+v+i^+£g, li+n^+Hg^+l. 

The indices and ig are subject to the restrictions: 

^2+^2+-^A even and = even. 

Case of Equal Orbital Exponents 

For the special case of = pg, one finds that in 

Eq. 170 the only surviving term of the summation over |i is 

|i = 0 and therefore, 

, ^max 

C - Z <2Pa) , f tVlH.2(PA' + Vu1<Pa>1''ovL <"3) 
" "min 

where (104, Eqs. III.35 and III.34) 

E (x) - I dt t" e"*t = Q (x,x) (174) 
J Q * 

Aj^(x) =1^ dt t^ e"*t = ^(x,x). (175) 
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DISCUSSION 

The Constants 

The constants are invariant when is permuted 

with (.ggmg) and/or when is permuted with (^^m^). 

Moreover, from Eq. 136 of the preceding chapter, it follows 

that 

' (176) 

whence 

= 0, for n = odd. (177) 

The summation over n in Eq. 170 can therefore be restricted 

to even values if the quantum numbers, ngigm^i^m^, are equal 

to the quantum numbers, respectively. 

Index Limits 

In order to evaluate a particular integral, one requires 

a table of functions and a table of functions. In 

both, the index p is limited by the inequality 

0 < fi. < n^+Hg, (178) 

while the limits on the index n differ for the two tables 

and are functions of |i. For Gg^, the index g ranges from 

Smin to Smax 

12a+2 when 0 < p. < a 

2ti+2 when a < {i < (179) 
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a = Max {O, 

Kmax ^ ̂ +"A+"B+^l+^2+^3+^4+2' (IBO) 

For H. , the index h ranges from h_.„ to ht 
hji ' mm max 

where 

, 1 when 0 

. 2^-2(^^+f2+^3+^4)+l when ij^+io+io+i^<ji<nA+n^ (181) 

Vx ° • (182) 

Properties of Auxiliary Functions 

The auxiliary functions and were defined in 

Eqs. 165 and 166. They are related to the functions, 

previously defined by O-Ohata and Ruedenberg (102, Eqs. 2.13 

and 2.12), and 

G^ ̂ (x,y) = (2/x+y) [^(x+y), (x-y)/(x+y)] (183) 

^(x,y) = n! (2/x+y)^+^ ' (x-y)/(x+y) ] . (184) 

The functions G and H satisfy very similar identities 
n J |i p 

and, in the following equations the generic symbol, F^^, is 

used to denote either one. By substituting into Eqs. 165 and 

166 the hypergeometric series for f^ given in Eqs. B1 and B2 

of the preceding chapter, one finds the series representations, 

F„ (x,y) = E [a(|i,k)/(2ix+k+l)!](x-y)^ U (x) (185) 
n,li k=0 

00 k 
F^ (x,y) = E [a((i,k)/(2in-k+l)f](y-x)'^ U , (y) (186) 

k=0 

CO pif 
F^ (x,y) = L [a(M,k)/(2p+2k+l)!](x-y/2)^* U_ (x-y/2). 

k=0 ^ (187) 



www.manaraa.com

188 

Here, 

a(ji,k) = (2m.+1)î (ji+k) î/(ji îkî), 

and the symbol, U^, denotes the function if f^^ = , and 

the function if . These were defined in Eqs. 

174 and 175. 

By substituting into Eqs. 165 and 166 the integral 

representation of f^, obtained by combining Eqs. 124 and 130 

of the preceding chapter, one finds the integral representa^ 

tion 

Fn,p(x,y) = [(2p+l)/22^+l] 

•j* dn(i-n )̂̂ u l̂-|(x+y) + ^<x-y)n] (188) 

where the are the same as before. 

The most useful recursion relation for these functions 

is obtained by inserting in Eqs. 165 and 166 for f^ the rela

tion in Eq. B5 of the preceding chapter. This yields 

+ [ (x-y) ̂/4(2|j+3) (2|i+5) • 

(189) 

This recurence relation involves only positive terms since 

both and are always positive. 

Evaluation of the Functions G^^ and 

The functions needed are obtained by use of the recursion 

relation in Eq. 189 which involves only the addition of 

positive terms so that no subtractive losses of accuracy 

occur. Only certain rows of each table are needed as starting 



www.manaraa.com

189 

functions for this recursive procedure. 

As an example, diagrams of the required G and H function 

tables are given in Figure 2 for the evaluation of the 

integral [A2p, Als | B2p, B2s], The starting functions are 

denoted by the symbol s and the elements obtained by 

recursion are denoted by r. 

The starting functions are obtained from the integral 

representation of Éq. 188 by a Gaussian numerical integration 

(108, p. 887, Eq.. 25.4.29). Thus, one obtains the formula 

where is the i-th zero of the Legendre functions, Pjj(n), 

and 

a)|^^i=[(2ii+l)/2^+^] 1^1 (1-n.Vw. (191) 

with w^ being the weights given by 

w. = 2/(l-n .)^ [P'jj(h i)]^. (192) 

To obtain an accuray of 10~® atomic units, the order, N, of 

the numerical integration was found to be dependent on the 

arguments and pg by the approximate relationship 

N=2 X the largest integer in {5 + 7.5 [(p^-pg)/(p^+pg)]4(193) 

Evaluation of the Functions and E^ 

The functions, A^, are obtained in all cases using the 

recursion relation: 

An(x) = (n A^_j^(x) + e"'*)/x (194) 
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Figure 2. Auxiliary functions needed to evaluate the integral 
[A2p AIs I B2p B2s]: G functions in upper diagram, 
H functions in lower diagram 
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from the starting function 

AQ(X) = e */x. (195) 

The functions can be obtained with an accuracy of 

ten significant figures, using the recursion relation 

E^(x) = (n -e~^)/x (196) 

with the starting function 

EQ(x) = (l-e"*)/x, (197) 

whenever the following relation is satisfied: 

X > (+0.072 + 0.012 (198) 

Here n is the maximum index value required. When this 
max 

relation is not satisfied, Eq. 196 loses too many significant 

figures and one must use the recursion relation in the reverse 

direction in which no subtractions occur. In this case, one 

needs E as a starting function. The most rapid scheme for 
max 

obtaining it was found to be the Taylor Series expansion, 

If 
En(x) = Z [(7-x)Vkî] E (7), (199) n n+K 

if function values E^(7) were stored at sufficiently close 

intervals of 7. This table of fixed values was computed by 

the infinite series, 

00 

E (7) = n! e""y S 7V(n+k+l).'. (200) 
" k=0 
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The number of terms needed in the series, Eq. 199, depends on 

the size of the interval of grid points 7 stored. With an 

interval of 0.33 units, no more than six terms are needed 

in the Taylor Series in order to converge to ten significant 

places. 
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COMPUTATION TIMES 

The computer times quoted here are for FORTRAN programs 

written with double precision arithmetic for use on an IBM 

360/50 computer. The times include the calculation of all 

auxiliary functions required, retrieval and use of the 

constants from permanent disc storage, summation of the series 

in Eq. 170, as well as writing out the matrix of integrals 

onto disc storage. 

The actual time per single integral is a function of the 

quantum numbers, since the latter determine the size of the G 

and H tables required as well as the number of terms in 

the series in Eq. 170. A significant fraction of the time is 

spent on the numerical integrations of Eq. 190 for the start

ing functions and the number of points required depends on 

the values of the orbital exponents according to Eq. 193. 

Quoted here is the time needed for the relatively Unfavorable 

case requiring a 16 point numerical integration. Letting n 

represent the average of the four principal quantum numbers, 

n^, and letting £ represent the average of the four angular 

quantum numbers, the time for a single non-zero integral 

was found to be n(30 + 12^) milliseconds. 

After an initial calculation of all integrals occurring 

over a basis set of functions on each center, subsequent 

changes in the orbital exponents require recalculation of 
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only part of the Coulomb matrix. Provision for this is 

incorporated into the computer program and results in a 

substantial savings of time. For the initial calculation 

of the matrix of 11,025 Coulomb integrals arising from the 

basis set consisting of the functions Is, 2s, 2pa, 2pir, 2pir, 

3s, 3pa, 3pir, 3pir, 3do, 3dir, 3dir, 3dô, 3dô, on each center, 

each function having a different ç value, five minutes are 

needed. Changing one of the basis functions and recalculating 

the new matrix of integrals, requires 45 seconds. 

Whereas in some methods, serious difficulties arise 

when the orbital exponents on the two centers approach each 

other, the present procedure becomes more accurate as well as 

faster in this case. For example, when allç 's are equal, 

the aforementioned time of five minutes is reduced to 46 

seconds while the aforementioned time of 45 seconds is 

reduced to 26 seconds. 
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